Robust Deep Learning Ensemble Against Deception
Deep neural network (DNN) models are known to be vulnerable to maliciously crafted adversarial examples and to out-of-distribution inputs drawn sufficiently far away from the training data. How to protect a machine learning model against deception of both types of destructive inputs remains an open...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on dependable and secure computing 2021-07, Vol.18 (4), p.1513-1527 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1527 |
---|---|
container_issue | 4 |
container_start_page | 1513 |
container_title | IEEE transactions on dependable and secure computing |
container_volume | 18 |
creator | Wei, Wenqi Liu, Ling |
description | Deep neural network (DNN) models are known to be vulnerable to maliciously crafted adversarial examples and to out-of-distribution inputs drawn sufficiently far away from the training data. How to protect a machine learning model against deception of both types of destructive inputs remains an open challenge. This article presents XEnsemble, a diversity ensemble verification methodology for enhancing the adversarial robustness of DNN models against deception caused by either adversarial examples or out-of-distribution inputs. XEnsemble by design has three unique capabilities. First, XEnsemble builds diverse input denoising verifiers by leveraging different data cleaning techniques. Second, XEnsemble develops a disagreement-diversity ensemble learning methodology for guarding the output of the prediction model against deception. Third, XEnsemble provides a suite of algorithms to combine input verification and output verification to protect the DNN prediction models from both adversarial examples and out of distribution inputs. Evaluated using 11 popular adversarial attacks and two representative out-of-distribution datasets, we show that XEnsemble achieves a high defense success rate against adversarial examples and a high detection success rate against out-of-distribution data inputs, and outperforms existing representative defense methods with respect to robustness and defensibility. |
doi_str_mv | 10.1109/TDSC.2020.3024660 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2549757059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9200713</ieee_id><sourcerecordid>2549757059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-febd5d5d4a58704d4d58f46bffcdcbd72e74a49c86bab965067844e6735bccc33</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE46m-xH9lj6oUJB0HpedjeTktImcTc9-O_d2CJzmIF53hl4CHmkkFEKarZdfi6yHHLICsiZEHBFJlQxmgLQ8jrOnPGUK0lvyV0Ie4hQqdiEzD46ewpDskTskw0a3zbtLlm1AY_2gMl8Z5r2b-2wH5quvSc3tTkEfLj0Kflar7aL13Tz_vK2mG9SVxRiSGu0FY_FDC8lsIpVvKyZsHXtKmcrmaNkhilXCmusEhyELBlDIQtunYs3puT5fLf33fcJw6D33cm38aXOOVOSS-AqUvRMOd-F4LHWvW-Oxv9oCnr0okcvevSiL15i5umcaRDxn1c5gKRF8Qv9sV22</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549757059</pqid></control><display><type>article</type><title>Robust Deep Learning Ensemble Against Deception</title><source>IEEE/IET Electronic Library</source><creator>Wei, Wenqi ; Liu, Ling</creator><creatorcontrib>Wei, Wenqi ; Liu, Ling</creatorcontrib><description>Deep neural network (DNN) models are known to be vulnerable to maliciously crafted adversarial examples and to out-of-distribution inputs drawn sufficiently far away from the training data. How to protect a machine learning model against deception of both types of destructive inputs remains an open challenge. This article presents XEnsemble, a diversity ensemble verification methodology for enhancing the adversarial robustness of DNN models against deception caused by either adversarial examples or out-of-distribution inputs. XEnsemble by design has three unique capabilities. First, XEnsemble builds diverse input denoising verifiers by leveraging different data cleaning techniques. Second, XEnsemble develops a disagreement-diversity ensemble learning methodology for guarding the output of the prediction model against deception. Third, XEnsemble provides a suite of algorithms to combine input verification and output verification to protect the DNN prediction models from both adversarial examples and out of distribution inputs. Evaluated using 11 popular adversarial attacks and two representative out-of-distribution datasets, we show that XEnsemble achieves a high defense success rate against adversarial examples and a high detection success rate against out-of-distribution data inputs, and outperforms existing representative defense methods with respect to robustness and defensibility.</description><identifier>ISSN: 1545-5971</identifier><identifier>EISSN: 1941-0018</identifier><identifier>DOI: 10.1109/TDSC.2020.3024660</identifier><identifier>CODEN: ITDSCM</identifier><language>eng</language><publisher>Washington: IEEE</publisher><subject>adversarial attack and defense ; Algorithms ; Artificial neural networks ; Data models ; Deception ; Deep learning ; ensemble method ; Machine learning ; Neural networks ; Prediction algorithms ; Prediction models ; Predictive models ; Robust deep learning ; Robustness ; Training ; Verification</subject><ispartof>IEEE transactions on dependable and secure computing, 2021-07, Vol.18 (4), p.1513-1527</ispartof><rights>Copyright IEEE Computer Society 2021</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-febd5d5d4a58704d4d58f46bffcdcbd72e74a49c86bab965067844e6735bccc33</citedby><cites>FETCH-LOGICAL-c336t-febd5d5d4a58704d4d58f46bffcdcbd72e74a49c86bab965067844e6735bccc33</cites><orcidid>0000-0002-4138-3082 ; 0000-0001-9177-114X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9200713$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9200713$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wei, Wenqi</creatorcontrib><creatorcontrib>Liu, Ling</creatorcontrib><title>Robust Deep Learning Ensemble Against Deception</title><title>IEEE transactions on dependable and secure computing</title><addtitle>TDSC</addtitle><description>Deep neural network (DNN) models are known to be vulnerable to maliciously crafted adversarial examples and to out-of-distribution inputs drawn sufficiently far away from the training data. How to protect a machine learning model against deception of both types of destructive inputs remains an open challenge. This article presents XEnsemble, a diversity ensemble verification methodology for enhancing the adversarial robustness of DNN models against deception caused by either adversarial examples or out-of-distribution inputs. XEnsemble by design has three unique capabilities. First, XEnsemble builds diverse input denoising verifiers by leveraging different data cleaning techniques. Second, XEnsemble develops a disagreement-diversity ensemble learning methodology for guarding the output of the prediction model against deception. Third, XEnsemble provides a suite of algorithms to combine input verification and output verification to protect the DNN prediction models from both adversarial examples and out of distribution inputs. Evaluated using 11 popular adversarial attacks and two representative out-of-distribution datasets, we show that XEnsemble achieves a high defense success rate against adversarial examples and a high detection success rate against out-of-distribution data inputs, and outperforms existing representative defense methods with respect to robustness and defensibility.</description><subject>adversarial attack and defense</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Data models</subject><subject>Deception</subject><subject>Deep learning</subject><subject>ensemble method</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Prediction algorithms</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>Robust deep learning</subject><subject>Robustness</subject><subject>Training</subject><subject>Verification</subject><issn>1545-5971</issn><issn>1941-0018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE46m-xH9lj6oUJB0HpedjeTktImcTc9-O_d2CJzmIF53hl4CHmkkFEKarZdfi6yHHLICsiZEHBFJlQxmgLQ8jrOnPGUK0lvyV0Ie4hQqdiEzD46ewpDskTskw0a3zbtLlm1AY_2gMl8Z5r2b-2wH5quvSc3tTkEfLj0Kflar7aL13Tz_vK2mG9SVxRiSGu0FY_FDC8lsIpVvKyZsHXtKmcrmaNkhilXCmusEhyELBlDIQtunYs3puT5fLf33fcJw6D33cm38aXOOVOSS-AqUvRMOd-F4LHWvW-Oxv9oCnr0okcvevSiL15i5umcaRDxn1c5gKRF8Qv9sV22</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Wei, Wenqi</creator><creator>Liu, Ling</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-4138-3082</orcidid><orcidid>https://orcid.org/0000-0001-9177-114X</orcidid></search><sort><creationdate>20210701</creationdate><title>Robust Deep Learning Ensemble Against Deception</title><author>Wei, Wenqi ; Liu, Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-febd5d5d4a58704d4d58f46bffcdcbd72e74a49c86bab965067844e6735bccc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>adversarial attack and defense</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Data models</topic><topic>Deception</topic><topic>Deep learning</topic><topic>ensemble method</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Prediction algorithms</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>Robust deep learning</topic><topic>Robustness</topic><topic>Training</topic><topic>Verification</topic><toplevel>online_resources</toplevel><creatorcontrib>Wei, Wenqi</creatorcontrib><creatorcontrib>Liu, Ling</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>IEEE transactions on dependable and secure computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wei, Wenqi</au><au>Liu, Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Deep Learning Ensemble Against Deception</atitle><jtitle>IEEE transactions on dependable and secure computing</jtitle><stitle>TDSC</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>18</volume><issue>4</issue><spage>1513</spage><epage>1527</epage><pages>1513-1527</pages><issn>1545-5971</issn><eissn>1941-0018</eissn><coden>ITDSCM</coden><abstract>Deep neural network (DNN) models are known to be vulnerable to maliciously crafted adversarial examples and to out-of-distribution inputs drawn sufficiently far away from the training data. How to protect a machine learning model against deception of both types of destructive inputs remains an open challenge. This article presents XEnsemble, a diversity ensemble verification methodology for enhancing the adversarial robustness of DNN models against deception caused by either adversarial examples or out-of-distribution inputs. XEnsemble by design has three unique capabilities. First, XEnsemble builds diverse input denoising verifiers by leveraging different data cleaning techniques. Second, XEnsemble develops a disagreement-diversity ensemble learning methodology for guarding the output of the prediction model against deception. Third, XEnsemble provides a suite of algorithms to combine input verification and output verification to protect the DNN prediction models from both adversarial examples and out of distribution inputs. Evaluated using 11 popular adversarial attacks and two representative out-of-distribution datasets, we show that XEnsemble achieves a high defense success rate against adversarial examples and a high detection success rate against out-of-distribution data inputs, and outperforms existing representative defense methods with respect to robustness and defensibility.</abstract><cop>Washington</cop><pub>IEEE</pub><doi>10.1109/TDSC.2020.3024660</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4138-3082</orcidid><orcidid>https://orcid.org/0000-0001-9177-114X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-5971 |
ispartof | IEEE transactions on dependable and secure computing, 2021-07, Vol.18 (4), p.1513-1527 |
issn | 1545-5971 1941-0018 |
language | eng |
recordid | cdi_proquest_journals_2549757059 |
source | IEEE/IET Electronic Library |
subjects | adversarial attack and defense Algorithms Artificial neural networks Data models Deception Deep learning ensemble method Machine learning Neural networks Prediction algorithms Prediction models Predictive models Robust deep learning Robustness Training Verification |
title | Robust Deep Learning Ensemble Against Deception |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A45%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Deep%20Learning%20Ensemble%20Against%20Deception&rft.jtitle=IEEE%20transactions%20on%20dependable%20and%20secure%20computing&rft.au=Wei,%20Wenqi&rft.date=2021-07-01&rft.volume=18&rft.issue=4&rft.spage=1513&rft.epage=1527&rft.pages=1513-1527&rft.issn=1545-5971&rft.eissn=1941-0018&rft.coden=ITDSCM&rft_id=info:doi/10.1109/TDSC.2020.3024660&rft_dat=%3Cproquest_RIE%3E2549757059%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549757059&rft_id=info:pmid/&rft_ieee_id=9200713&rfr_iscdi=true |