Two-Hop Relay Probing in WiGig Device-to-Device Networks Using Sleeping Contextual Bandits
Millimeter wave (mmWave) relaying has been introduced recently as a solution to extend the coverage of mmWave communication systems and to deal with the blockage problem as well. In order for the relay probing process to identify the most suitable relays, we should maintain an intelligent trade-off...
Gespeichert in:
Veröffentlicht in: | IEEE wireless communications letters 2021-07, Vol.10 (7), p.1581-1585 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1585 |
---|---|
container_issue | 7 |
container_start_page | 1581 |
container_title | IEEE wireless communications letters |
container_volume | 10 |
creator | Mohamed, Ehab Mahmoud Hashima, Sherief Hatano, Kohei Aldossari, Saud Alhajaj Zareei, Mahdi Rihan, Mohamed |
description | Millimeter wave (mmWave) relaying has been introduced recently as a solution to extend the coverage of mmWave communication systems and to deal with the blockage problem as well. In order for the relay probing process to identify the most suitable relays, we should maintain an intelligent trade-off between the number of probed relays and the overhead due to beamforming training (BT). This letter leverages an online learning tool, namely sleeping contextual multi-armed bandits (S-CMAB), to effectively address this problem. Thanks to the multi-band capability of WiGig devices that supports both mmWave and WiFi, the characteristics of the WiFi signal centered at 5.25 GHz are used as contexts for the candidate WiGig relays operating at 60 GHz. Moreover, the sleeping relays that are unable to construct a WiGig link, due to blockages for instance, could be identified during the online learning process and accordingly excluded. Extensive simulations prove that the proposed S-CMAB approach integrated with the proposed sleeping linear upper confidence bound (S-LinUCB) algorithm outperform the legacy approaches and the context-free UCB algorithm in terms of both the average throughput and energy efficiency. |
doi_str_mv | 10.1109/LWC.2021.3074972 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2549757017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9410584</ieee_id><sourcerecordid>2549757017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-9dce1921a6b98e2bf6c753cc7fda91002d9a54bb1d1e70d40fabc559ae6e6023</originalsourceid><addsrcrecordid>eNo9kMFLwzAUh4MoOObugpeA584kTZrlqFU3YajoZOAlpO3ryKzNTDrn_ntbOvYu73f4fu_Bh9AlJWNKibqZL9MxI4yOYyK5kuwEDRhNWMRiLk6POZbnaBTCmrSTEMroZIA-FzsXzdwGv0Fl9vjVu8zWK2xrvLRTu8L38GtziBoX9Qk_Q7Nz_ivgj9CB7xXApgupqxv4a7amwnemLmwTLtBZaaoAo8MeosXjwyKdRfOX6VN6O49yTngTqSIHqhg1SaYmwLIyyaWI81yWhVGUEFYoI3iW0YKCJAUnpclyIZSBBBLC4iG67s9uvPvZQmj02m193X7UTLQyhCRUthTpqdy7EDyUeuPtt_F7TYnuHOrWoe4c6oPDtnLVVywAHHHFKRETHv8DCjdsrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549757017</pqid></control><display><type>article</type><title>Two-Hop Relay Probing in WiGig Device-to-Device Networks Using Sleeping Contextual Bandits</title><source>IEEE Electronic Library (IEL)</source><creator>Mohamed, Ehab Mahmoud ; Hashima, Sherief ; Hatano, Kohei ; Aldossari, Saud Alhajaj ; Zareei, Mahdi ; Rihan, Mohamed</creator><creatorcontrib>Mohamed, Ehab Mahmoud ; Hashima, Sherief ; Hatano, Kohei ; Aldossari, Saud Alhajaj ; Zareei, Mahdi ; Rihan, Mohamed</creatorcontrib><description>Millimeter wave (mmWave) relaying has been introduced recently as a solution to extend the coverage of mmWave communication systems and to deal with the blockage problem as well. In order for the relay probing process to identify the most suitable relays, we should maintain an intelligent trade-off between the number of probed relays and the overhead due to beamforming training (BT). This letter leverages an online learning tool, namely sleeping contextual multi-armed bandits (S-CMAB), to effectively address this problem. Thanks to the multi-band capability of WiGig devices that supports both mmWave and WiFi, the characteristics of the WiFi signal centered at 5.25 GHz are used as contexts for the candidate WiGig relays operating at 60 GHz. Moreover, the sleeping relays that are unable to construct a WiGig link, due to blockages for instance, could be identified during the online learning process and accordingly excluded. Extensive simulations prove that the proposed S-CMAB approach integrated with the proposed sleeping linear upper confidence bound (S-LinUCB) algorithm outperform the legacy approaches and the context-free UCB algorithm in terms of both the average throughput and energy efficiency.</description><identifier>ISSN: 2162-2337</identifier><identifier>EISSN: 2162-2345</identifier><identifier>DOI: 10.1109/LWC.2021.3074972</identifier><identifier>CODEN: IWCLAF</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Beamforming ; Communications systems ; contextual MAB ; Distance learning ; Games ; IEEE 802.11 Standard ; Machine learning ; Mathematical model ; Millimeter waves ; Optimization ; Relay ; relay probing ; Relaying ; Relays ; Throughput ; WiFi ; WiGig ; Wireless fidelity</subject><ispartof>IEEE wireless communications letters, 2021-07, Vol.10 (7), p.1581-1585</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-9dce1921a6b98e2bf6c753cc7fda91002d9a54bb1d1e70d40fabc559ae6e6023</citedby><cites>FETCH-LOGICAL-c404t-9dce1921a6b98e2bf6c753cc7fda91002d9a54bb1d1e70d40fabc559ae6e6023</cites><orcidid>0000-0002-4443-7066 ; 0000-0001-5443-9711 ; 0000-0003-4030-2559 ; 0000-0002-1536-1269 ; 0000-0001-6623-1758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9410584$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9410584$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mohamed, Ehab Mahmoud</creatorcontrib><creatorcontrib>Hashima, Sherief</creatorcontrib><creatorcontrib>Hatano, Kohei</creatorcontrib><creatorcontrib>Aldossari, Saud Alhajaj</creatorcontrib><creatorcontrib>Zareei, Mahdi</creatorcontrib><creatorcontrib>Rihan, Mohamed</creatorcontrib><title>Two-Hop Relay Probing in WiGig Device-to-Device Networks Using Sleeping Contextual Bandits</title><title>IEEE wireless communications letters</title><addtitle>LWC</addtitle><description>Millimeter wave (mmWave) relaying has been introduced recently as a solution to extend the coverage of mmWave communication systems and to deal with the blockage problem as well. In order for the relay probing process to identify the most suitable relays, we should maintain an intelligent trade-off between the number of probed relays and the overhead due to beamforming training (BT). This letter leverages an online learning tool, namely sleeping contextual multi-armed bandits (S-CMAB), to effectively address this problem. Thanks to the multi-band capability of WiGig devices that supports both mmWave and WiFi, the characteristics of the WiFi signal centered at 5.25 GHz are used as contexts for the candidate WiGig relays operating at 60 GHz. Moreover, the sleeping relays that are unable to construct a WiGig link, due to blockages for instance, could be identified during the online learning process and accordingly excluded. Extensive simulations prove that the proposed S-CMAB approach integrated with the proposed sleeping linear upper confidence bound (S-LinUCB) algorithm outperform the legacy approaches and the context-free UCB algorithm in terms of both the average throughput and energy efficiency.</description><subject>Algorithms</subject><subject>Beamforming</subject><subject>Communications systems</subject><subject>contextual MAB</subject><subject>Distance learning</subject><subject>Games</subject><subject>IEEE 802.11 Standard</subject><subject>Machine learning</subject><subject>Mathematical model</subject><subject>Millimeter waves</subject><subject>Optimization</subject><subject>Relay</subject><subject>relay probing</subject><subject>Relaying</subject><subject>Relays</subject><subject>Throughput</subject><subject>WiFi</subject><subject>WiGig</subject><subject>Wireless fidelity</subject><issn>2162-2337</issn><issn>2162-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUh4MoOObugpeA584kTZrlqFU3YajoZOAlpO3ryKzNTDrn_ntbOvYu73f4fu_Bh9AlJWNKibqZL9MxI4yOYyK5kuwEDRhNWMRiLk6POZbnaBTCmrSTEMroZIA-FzsXzdwGv0Fl9vjVu8zWK2xrvLRTu8L38GtziBoX9Qk_Q7Nz_ivgj9CB7xXApgupqxv4a7amwnemLmwTLtBZaaoAo8MeosXjwyKdRfOX6VN6O49yTngTqSIHqhg1SaYmwLIyyaWI81yWhVGUEFYoI3iW0YKCJAUnpclyIZSBBBLC4iG67s9uvPvZQmj02m193X7UTLQyhCRUthTpqdy7EDyUeuPtt_F7TYnuHOrWoe4c6oPDtnLVVywAHHHFKRETHv8DCjdsrw</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Mohamed, Ehab Mahmoud</creator><creator>Hashima, Sherief</creator><creator>Hatano, Kohei</creator><creator>Aldossari, Saud Alhajaj</creator><creator>Zareei, Mahdi</creator><creator>Rihan, Mohamed</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4443-7066</orcidid><orcidid>https://orcid.org/0000-0001-5443-9711</orcidid><orcidid>https://orcid.org/0000-0003-4030-2559</orcidid><orcidid>https://orcid.org/0000-0002-1536-1269</orcidid><orcidid>https://orcid.org/0000-0001-6623-1758</orcidid></search><sort><creationdate>20210701</creationdate><title>Two-Hop Relay Probing in WiGig Device-to-Device Networks Using Sleeping Contextual Bandits</title><author>Mohamed, Ehab Mahmoud ; Hashima, Sherief ; Hatano, Kohei ; Aldossari, Saud Alhajaj ; Zareei, Mahdi ; Rihan, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-9dce1921a6b98e2bf6c753cc7fda91002d9a54bb1d1e70d40fabc559ae6e6023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Beamforming</topic><topic>Communications systems</topic><topic>contextual MAB</topic><topic>Distance learning</topic><topic>Games</topic><topic>IEEE 802.11 Standard</topic><topic>Machine learning</topic><topic>Mathematical model</topic><topic>Millimeter waves</topic><topic>Optimization</topic><topic>Relay</topic><topic>relay probing</topic><topic>Relaying</topic><topic>Relays</topic><topic>Throughput</topic><topic>WiFi</topic><topic>WiGig</topic><topic>Wireless fidelity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohamed, Ehab Mahmoud</creatorcontrib><creatorcontrib>Hashima, Sherief</creatorcontrib><creatorcontrib>Hatano, Kohei</creatorcontrib><creatorcontrib>Aldossari, Saud Alhajaj</creatorcontrib><creatorcontrib>Zareei, Mahdi</creatorcontrib><creatorcontrib>Rihan, Mohamed</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mohamed, Ehab Mahmoud</au><au>Hashima, Sherief</au><au>Hatano, Kohei</au><au>Aldossari, Saud Alhajaj</au><au>Zareei, Mahdi</au><au>Rihan, Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Hop Relay Probing in WiGig Device-to-Device Networks Using Sleeping Contextual Bandits</atitle><jtitle>IEEE wireless communications letters</jtitle><stitle>LWC</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>10</volume><issue>7</issue><spage>1581</spage><epage>1585</epage><pages>1581-1585</pages><issn>2162-2337</issn><eissn>2162-2345</eissn><coden>IWCLAF</coden><abstract>Millimeter wave (mmWave) relaying has been introduced recently as a solution to extend the coverage of mmWave communication systems and to deal with the blockage problem as well. In order for the relay probing process to identify the most suitable relays, we should maintain an intelligent trade-off between the number of probed relays and the overhead due to beamforming training (BT). This letter leverages an online learning tool, namely sleeping contextual multi-armed bandits (S-CMAB), to effectively address this problem. Thanks to the multi-band capability of WiGig devices that supports both mmWave and WiFi, the characteristics of the WiFi signal centered at 5.25 GHz are used as contexts for the candidate WiGig relays operating at 60 GHz. Moreover, the sleeping relays that are unable to construct a WiGig link, due to blockages for instance, could be identified during the online learning process and accordingly excluded. Extensive simulations prove that the proposed S-CMAB approach integrated with the proposed sleeping linear upper confidence bound (S-LinUCB) algorithm outperform the legacy approaches and the context-free UCB algorithm in terms of both the average throughput and energy efficiency.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LWC.2021.3074972</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4443-7066</orcidid><orcidid>https://orcid.org/0000-0001-5443-9711</orcidid><orcidid>https://orcid.org/0000-0003-4030-2559</orcidid><orcidid>https://orcid.org/0000-0002-1536-1269</orcidid><orcidid>https://orcid.org/0000-0001-6623-1758</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-2337 |
ispartof | IEEE wireless communications letters, 2021-07, Vol.10 (7), p.1581-1585 |
issn | 2162-2337 2162-2345 |
language | eng |
recordid | cdi_proquest_journals_2549757017 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Beamforming Communications systems contextual MAB Distance learning Games IEEE 802.11 Standard Machine learning Mathematical model Millimeter waves Optimization Relay relay probing Relaying Relays Throughput WiFi WiGig Wireless fidelity |
title | Two-Hop Relay Probing in WiGig Device-to-Device Networks Using Sleeping Contextual Bandits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A26%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Hop%20Relay%20Probing%20in%20WiGig%20Device-to-Device%20Networks%20Using%20Sleeping%20Contextual%20Bandits&rft.jtitle=IEEE%20wireless%20communications%20letters&rft.au=Mohamed,%20Ehab%20Mahmoud&rft.date=2021-07-01&rft.volume=10&rft.issue=7&rft.spage=1581&rft.epage=1585&rft.pages=1581-1585&rft.issn=2162-2337&rft.eissn=2162-2345&rft.coden=IWCLAF&rft_id=info:doi/10.1109/LWC.2021.3074972&rft_dat=%3Cproquest_RIE%3E2549757017%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549757017&rft_id=info:pmid/&rft_ieee_id=9410584&rfr_iscdi=true |