Two-Hop Relay Probing in WiGig Device-to-Device Networks Using Sleeping Contextual Bandits

Millimeter wave (mmWave) relaying has been introduced recently as a solution to extend the coverage of mmWave communication systems and to deal with the blockage problem as well. In order for the relay probing process to identify the most suitable relays, we should maintain an intelligent trade-off...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE wireless communications letters 2021-07, Vol.10 (7), p.1581-1585
Hauptverfasser: Mohamed, Ehab Mahmoud, Hashima, Sherief, Hatano, Kohei, Aldossari, Saud Alhajaj, Zareei, Mahdi, Rihan, Mohamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1585
container_issue 7
container_start_page 1581
container_title IEEE wireless communications letters
container_volume 10
creator Mohamed, Ehab Mahmoud
Hashima, Sherief
Hatano, Kohei
Aldossari, Saud Alhajaj
Zareei, Mahdi
Rihan, Mohamed
description Millimeter wave (mmWave) relaying has been introduced recently as a solution to extend the coverage of mmWave communication systems and to deal with the blockage problem as well. In order for the relay probing process to identify the most suitable relays, we should maintain an intelligent trade-off between the number of probed relays and the overhead due to beamforming training (BT). This letter leverages an online learning tool, namely sleeping contextual multi-armed bandits (S-CMAB), to effectively address this problem. Thanks to the multi-band capability of WiGig devices that supports both mmWave and WiFi, the characteristics of the WiFi signal centered at 5.25 GHz are used as contexts for the candidate WiGig relays operating at 60 GHz. Moreover, the sleeping relays that are unable to construct a WiGig link, due to blockages for instance, could be identified during the online learning process and accordingly excluded. Extensive simulations prove that the proposed S-CMAB approach integrated with the proposed sleeping linear upper confidence bound (S-LinUCB) algorithm outperform the legacy approaches and the context-free UCB algorithm in terms of both the average throughput and energy efficiency.
doi_str_mv 10.1109/LWC.2021.3074972
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2549757017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9410584</ieee_id><sourcerecordid>2549757017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-9dce1921a6b98e2bf6c753cc7fda91002d9a54bb1d1e70d40fabc559ae6e6023</originalsourceid><addsrcrecordid>eNo9kMFLwzAUh4MoOObugpeA584kTZrlqFU3YajoZOAlpO3ryKzNTDrn_ntbOvYu73f4fu_Bh9AlJWNKibqZL9MxI4yOYyK5kuwEDRhNWMRiLk6POZbnaBTCmrSTEMroZIA-FzsXzdwGv0Fl9vjVu8zWK2xrvLRTu8L38GtziBoX9Qk_Q7Nz_ivgj9CB7xXApgupqxv4a7amwnemLmwTLtBZaaoAo8MeosXjwyKdRfOX6VN6O49yTngTqSIHqhg1SaYmwLIyyaWI81yWhVGUEFYoI3iW0YKCJAUnpclyIZSBBBLC4iG67s9uvPvZQmj02m193X7UTLQyhCRUthTpqdy7EDyUeuPtt_F7TYnuHOrWoe4c6oPDtnLVVywAHHHFKRETHv8DCjdsrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549757017</pqid></control><display><type>article</type><title>Two-Hop Relay Probing in WiGig Device-to-Device Networks Using Sleeping Contextual Bandits</title><source>IEEE Electronic Library (IEL)</source><creator>Mohamed, Ehab Mahmoud ; Hashima, Sherief ; Hatano, Kohei ; Aldossari, Saud Alhajaj ; Zareei, Mahdi ; Rihan, Mohamed</creator><creatorcontrib>Mohamed, Ehab Mahmoud ; Hashima, Sherief ; Hatano, Kohei ; Aldossari, Saud Alhajaj ; Zareei, Mahdi ; Rihan, Mohamed</creatorcontrib><description>Millimeter wave (mmWave) relaying has been introduced recently as a solution to extend the coverage of mmWave communication systems and to deal with the blockage problem as well. In order for the relay probing process to identify the most suitable relays, we should maintain an intelligent trade-off between the number of probed relays and the overhead due to beamforming training (BT). This letter leverages an online learning tool, namely sleeping contextual multi-armed bandits (S-CMAB), to effectively address this problem. Thanks to the multi-band capability of WiGig devices that supports both mmWave and WiFi, the characteristics of the WiFi signal centered at 5.25 GHz are used as contexts for the candidate WiGig relays operating at 60 GHz. Moreover, the sleeping relays that are unable to construct a WiGig link, due to blockages for instance, could be identified during the online learning process and accordingly excluded. Extensive simulations prove that the proposed S-CMAB approach integrated with the proposed sleeping linear upper confidence bound (S-LinUCB) algorithm outperform the legacy approaches and the context-free UCB algorithm in terms of both the average throughput and energy efficiency.</description><identifier>ISSN: 2162-2337</identifier><identifier>EISSN: 2162-2345</identifier><identifier>DOI: 10.1109/LWC.2021.3074972</identifier><identifier>CODEN: IWCLAF</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Beamforming ; Communications systems ; contextual MAB ; Distance learning ; Games ; IEEE 802.11 Standard ; Machine learning ; Mathematical model ; Millimeter waves ; Optimization ; Relay ; relay probing ; Relaying ; Relays ; Throughput ; WiFi ; WiGig ; Wireless fidelity</subject><ispartof>IEEE wireless communications letters, 2021-07, Vol.10 (7), p.1581-1585</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-9dce1921a6b98e2bf6c753cc7fda91002d9a54bb1d1e70d40fabc559ae6e6023</citedby><cites>FETCH-LOGICAL-c404t-9dce1921a6b98e2bf6c753cc7fda91002d9a54bb1d1e70d40fabc559ae6e6023</cites><orcidid>0000-0002-4443-7066 ; 0000-0001-5443-9711 ; 0000-0003-4030-2559 ; 0000-0002-1536-1269 ; 0000-0001-6623-1758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9410584$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9410584$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mohamed, Ehab Mahmoud</creatorcontrib><creatorcontrib>Hashima, Sherief</creatorcontrib><creatorcontrib>Hatano, Kohei</creatorcontrib><creatorcontrib>Aldossari, Saud Alhajaj</creatorcontrib><creatorcontrib>Zareei, Mahdi</creatorcontrib><creatorcontrib>Rihan, Mohamed</creatorcontrib><title>Two-Hop Relay Probing in WiGig Device-to-Device Networks Using Sleeping Contextual Bandits</title><title>IEEE wireless communications letters</title><addtitle>LWC</addtitle><description>Millimeter wave (mmWave) relaying has been introduced recently as a solution to extend the coverage of mmWave communication systems and to deal with the blockage problem as well. In order for the relay probing process to identify the most suitable relays, we should maintain an intelligent trade-off between the number of probed relays and the overhead due to beamforming training (BT). This letter leverages an online learning tool, namely sleeping contextual multi-armed bandits (S-CMAB), to effectively address this problem. Thanks to the multi-band capability of WiGig devices that supports both mmWave and WiFi, the characteristics of the WiFi signal centered at 5.25 GHz are used as contexts for the candidate WiGig relays operating at 60 GHz. Moreover, the sleeping relays that are unable to construct a WiGig link, due to blockages for instance, could be identified during the online learning process and accordingly excluded. Extensive simulations prove that the proposed S-CMAB approach integrated with the proposed sleeping linear upper confidence bound (S-LinUCB) algorithm outperform the legacy approaches and the context-free UCB algorithm in terms of both the average throughput and energy efficiency.</description><subject>Algorithms</subject><subject>Beamforming</subject><subject>Communications systems</subject><subject>contextual MAB</subject><subject>Distance learning</subject><subject>Games</subject><subject>IEEE 802.11 Standard</subject><subject>Machine learning</subject><subject>Mathematical model</subject><subject>Millimeter waves</subject><subject>Optimization</subject><subject>Relay</subject><subject>relay probing</subject><subject>Relaying</subject><subject>Relays</subject><subject>Throughput</subject><subject>WiFi</subject><subject>WiGig</subject><subject>Wireless fidelity</subject><issn>2162-2337</issn><issn>2162-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUh4MoOObugpeA584kTZrlqFU3YajoZOAlpO3ryKzNTDrn_ntbOvYu73f4fu_Bh9AlJWNKibqZL9MxI4yOYyK5kuwEDRhNWMRiLk6POZbnaBTCmrSTEMroZIA-FzsXzdwGv0Fl9vjVu8zWK2xrvLRTu8L38GtziBoX9Qk_Q7Nz_ivgj9CB7xXApgupqxv4a7amwnemLmwTLtBZaaoAo8MeosXjwyKdRfOX6VN6O49yTngTqSIHqhg1SaYmwLIyyaWI81yWhVGUEFYoI3iW0YKCJAUnpclyIZSBBBLC4iG67s9uvPvZQmj02m193X7UTLQyhCRUthTpqdy7EDyUeuPtt_F7TYnuHOrWoe4c6oPDtnLVVywAHHHFKRETHv8DCjdsrw</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Mohamed, Ehab Mahmoud</creator><creator>Hashima, Sherief</creator><creator>Hatano, Kohei</creator><creator>Aldossari, Saud Alhajaj</creator><creator>Zareei, Mahdi</creator><creator>Rihan, Mohamed</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4443-7066</orcidid><orcidid>https://orcid.org/0000-0001-5443-9711</orcidid><orcidid>https://orcid.org/0000-0003-4030-2559</orcidid><orcidid>https://orcid.org/0000-0002-1536-1269</orcidid><orcidid>https://orcid.org/0000-0001-6623-1758</orcidid></search><sort><creationdate>20210701</creationdate><title>Two-Hop Relay Probing in WiGig Device-to-Device Networks Using Sleeping Contextual Bandits</title><author>Mohamed, Ehab Mahmoud ; Hashima, Sherief ; Hatano, Kohei ; Aldossari, Saud Alhajaj ; Zareei, Mahdi ; Rihan, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-9dce1921a6b98e2bf6c753cc7fda91002d9a54bb1d1e70d40fabc559ae6e6023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Beamforming</topic><topic>Communications systems</topic><topic>contextual MAB</topic><topic>Distance learning</topic><topic>Games</topic><topic>IEEE 802.11 Standard</topic><topic>Machine learning</topic><topic>Mathematical model</topic><topic>Millimeter waves</topic><topic>Optimization</topic><topic>Relay</topic><topic>relay probing</topic><topic>Relaying</topic><topic>Relays</topic><topic>Throughput</topic><topic>WiFi</topic><topic>WiGig</topic><topic>Wireless fidelity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohamed, Ehab Mahmoud</creatorcontrib><creatorcontrib>Hashima, Sherief</creatorcontrib><creatorcontrib>Hatano, Kohei</creatorcontrib><creatorcontrib>Aldossari, Saud Alhajaj</creatorcontrib><creatorcontrib>Zareei, Mahdi</creatorcontrib><creatorcontrib>Rihan, Mohamed</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mohamed, Ehab Mahmoud</au><au>Hashima, Sherief</au><au>Hatano, Kohei</au><au>Aldossari, Saud Alhajaj</au><au>Zareei, Mahdi</au><au>Rihan, Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Hop Relay Probing in WiGig Device-to-Device Networks Using Sleeping Contextual Bandits</atitle><jtitle>IEEE wireless communications letters</jtitle><stitle>LWC</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>10</volume><issue>7</issue><spage>1581</spage><epage>1585</epage><pages>1581-1585</pages><issn>2162-2337</issn><eissn>2162-2345</eissn><coden>IWCLAF</coden><abstract>Millimeter wave (mmWave) relaying has been introduced recently as a solution to extend the coverage of mmWave communication systems and to deal with the blockage problem as well. In order for the relay probing process to identify the most suitable relays, we should maintain an intelligent trade-off between the number of probed relays and the overhead due to beamforming training (BT). This letter leverages an online learning tool, namely sleeping contextual multi-armed bandits (S-CMAB), to effectively address this problem. Thanks to the multi-band capability of WiGig devices that supports both mmWave and WiFi, the characteristics of the WiFi signal centered at 5.25 GHz are used as contexts for the candidate WiGig relays operating at 60 GHz. Moreover, the sleeping relays that are unable to construct a WiGig link, due to blockages for instance, could be identified during the online learning process and accordingly excluded. Extensive simulations prove that the proposed S-CMAB approach integrated with the proposed sleeping linear upper confidence bound (S-LinUCB) algorithm outperform the legacy approaches and the context-free UCB algorithm in terms of both the average throughput and energy efficiency.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LWC.2021.3074972</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4443-7066</orcidid><orcidid>https://orcid.org/0000-0001-5443-9711</orcidid><orcidid>https://orcid.org/0000-0003-4030-2559</orcidid><orcidid>https://orcid.org/0000-0002-1536-1269</orcidid><orcidid>https://orcid.org/0000-0001-6623-1758</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-2337
ispartof IEEE wireless communications letters, 2021-07, Vol.10 (7), p.1581-1585
issn 2162-2337
2162-2345
language eng
recordid cdi_proquest_journals_2549757017
source IEEE Electronic Library (IEL)
subjects Algorithms
Beamforming
Communications systems
contextual MAB
Distance learning
Games
IEEE 802.11 Standard
Machine learning
Mathematical model
Millimeter waves
Optimization
Relay
relay probing
Relaying
Relays
Throughput
WiFi
WiGig
Wireless fidelity
title Two-Hop Relay Probing in WiGig Device-to-Device Networks Using Sleeping Contextual Bandits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A26%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Hop%20Relay%20Probing%20in%20WiGig%20Device-to-Device%20Networks%20Using%20Sleeping%20Contextual%20Bandits&rft.jtitle=IEEE%20wireless%20communications%20letters&rft.au=Mohamed,%20Ehab%20Mahmoud&rft.date=2021-07-01&rft.volume=10&rft.issue=7&rft.spage=1581&rft.epage=1585&rft.pages=1581-1585&rft.issn=2162-2337&rft.eissn=2162-2345&rft.coden=IWCLAF&rft_id=info:doi/10.1109/LWC.2021.3074972&rft_dat=%3Cproquest_RIE%3E2549757017%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549757017&rft_id=info:pmid/&rft_ieee_id=9410584&rfr_iscdi=true