Wide-temperature antifouling characteristic of a double re-entrant pillar array surface

•The droplet impacting dynamics on the HB, HP, SHB, and DRP surfaces were studied.•The DRP surface exhibits the antifouling characteristic from 25 to 560°C.•A physical model is provided to explain the droplet impacting dynamics on the DRP surface.•The DRP surface pushes the high-temperature limit fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2021-08, Vol.175, p.121178, Article 121178
Hauptverfasser: Huang, Chung-Te, Lee, Meng-Shiue, Lo, Ching-Wen, Hsu, Wensyang, Lu, Ming-Chang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 121178
container_title International journal of heat and mass transfer
container_volume 175
creator Huang, Chung-Te
Lee, Meng-Shiue
Lo, Ching-Wen
Hsu, Wensyang
Lu, Ming-Chang
description •The droplet impacting dynamics on the HB, HP, SHB, and DRP surfaces were studied.•The DRP surface exhibits the antifouling characteristic from 25 to 560°C.•A physical model is provided to explain the droplet impacting dynamics on the DRP surface.•The DRP surface pushes the high-temperature limit for antifouling. Fouling causes numerous adverse effects on various types of systems. In addition, clean fouling on a solid surface is cost-intensive and time-consuming. Superhydrophobic (SHB) surfaces with a water-repellent property can potentially be used for antifouling. However, SHB surfaces lose their antifouling property at high temperatures because of the failure of the hydrophobic coating on them. Nevertheless, there are numerous applications being operated at high temperatures. Thus, a surface exhibiting antifouling characteristic over a wide temperature range is required. In this study, we demonstrate that a double re-entrant pillar (DRP) array surface possesses a wide-temperature antifouling characteristic. Although the silicon dioxide top surface of the pillar is hydrophilic, the upward surface tension force from the DRPs prevents the impacting droplets from penetrating the pillar array. Thus, the impacting droplets bounce back from the surface without leaving residues on it at temperatures from 25 to 560°C. By contrast, the impurities of the impacting droplets are retained on an SHB surface composed of a silicon nanowire array at various temperatures. The wide-temperature antifouling property of the DRP surface can be used for preventing fouling in many industrial systems. [Display omitted]
doi_str_mv 10.1016/j.ijheatmasstransfer.2021.121178
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2549727213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931021002817</els_id><sourcerecordid>2549727213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-74e863803c5e0e4bfaff9ac8667146a276bfcaecba792c720f856ba69925fd933</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMouH78h4AXL12TtJs0N0X8RPCieAzTdKIp3XadpIL_3i3rzYunYZiX52Uexs6lWEoh9UW3jN0HQl5DSplgSAFpqYSSS6mkNPUeW8ja2ELJ2u6zhRDSFLaU4pAdpdTNq6j0gr29xRaLjOsNEuSJkMOQYxinPg7v3H8Agc9IMeXo-Rg48Hacmh45YYHDXJz5JvY9EAci-OZpogAeT9hBgD7h6e88Zq-3Ny_X98XT893D9dVT4UsjcmEqrHVZi9KvUGDVBAjBgq-1NrLSoIxuggf0DRirvFEi1CvdgLZWrUJry_KYne24Gxo_J0zZdeNEw7bSqVVljTJKzqnLXcrTmBJhcBuKa6BvJ4WbdbrO_dXpZp1up3OLeNwhcPvNV9xek484eGwjoc-uHeP_YT-_woxa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549727213</pqid></control><display><type>article</type><title>Wide-temperature antifouling characteristic of a double re-entrant pillar array surface</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Huang, Chung-Te ; Lee, Meng-Shiue ; Lo, Ching-Wen ; Hsu, Wensyang ; Lu, Ming-Chang</creator><creatorcontrib>Huang, Chung-Te ; Lee, Meng-Shiue ; Lo, Ching-Wen ; Hsu, Wensyang ; Lu, Ming-Chang</creatorcontrib><description>•The droplet impacting dynamics on the HB, HP, SHB, and DRP surfaces were studied.•The DRP surface exhibits the antifouling characteristic from 25 to 560°C.•A physical model is provided to explain the droplet impacting dynamics on the DRP surface.•The DRP surface pushes the high-temperature limit for antifouling. Fouling causes numerous adverse effects on various types of systems. In addition, clean fouling on a solid surface is cost-intensive and time-consuming. Superhydrophobic (SHB) surfaces with a water-repellent property can potentially be used for antifouling. However, SHB surfaces lose their antifouling property at high temperatures because of the failure of the hydrophobic coating on them. Nevertheless, there are numerous applications being operated at high temperatures. Thus, a surface exhibiting antifouling characteristic over a wide temperature range is required. In this study, we demonstrate that a double re-entrant pillar (DRP) array surface possesses a wide-temperature antifouling characteristic. Although the silicon dioxide top surface of the pillar is hydrophilic, the upward surface tension force from the DRPs prevents the impacting droplets from penetrating the pillar array. Thus, the impacting droplets bounce back from the surface without leaving residues on it at temperatures from 25 to 560°C. By contrast, the impurities of the impacting droplets are retained on an SHB surface composed of a silicon nanowire array at various temperatures. The wide-temperature antifouling property of the DRP surface can be used for preventing fouling in many industrial systems. [Display omitted]</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2021.121178</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Antifouling ; Arrays ; Double re-entrant pillar array ; Droplet ; Droplets ; High temperature ; Hydrophobicity ; Nanowires ; Silicon dioxide ; Silicon nanowire array ; Solid surfaces ; Superhydrophobic ; Surface tension ; Temperature</subject><ispartof>International journal of heat and mass transfer, 2021-08, Vol.175, p.121178, Article 121178</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-74e863803c5e0e4bfaff9ac8667146a276bfcaecba792c720f856ba69925fd933</citedby><cites>FETCH-LOGICAL-c370t-74e863803c5e0e4bfaff9ac8667146a276bfcaecba792c720f856ba69925fd933</cites><orcidid>0000-0002-1186-0191 ; 0000-0002-4865-8755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931021002817$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Huang, Chung-Te</creatorcontrib><creatorcontrib>Lee, Meng-Shiue</creatorcontrib><creatorcontrib>Lo, Ching-Wen</creatorcontrib><creatorcontrib>Hsu, Wensyang</creatorcontrib><creatorcontrib>Lu, Ming-Chang</creatorcontrib><title>Wide-temperature antifouling characteristic of a double re-entrant pillar array surface</title><title>International journal of heat and mass transfer</title><description>•The droplet impacting dynamics on the HB, HP, SHB, and DRP surfaces were studied.•The DRP surface exhibits the antifouling characteristic from 25 to 560°C.•A physical model is provided to explain the droplet impacting dynamics on the DRP surface.•The DRP surface pushes the high-temperature limit for antifouling. Fouling causes numerous adverse effects on various types of systems. In addition, clean fouling on a solid surface is cost-intensive and time-consuming. Superhydrophobic (SHB) surfaces with a water-repellent property can potentially be used for antifouling. However, SHB surfaces lose their antifouling property at high temperatures because of the failure of the hydrophobic coating on them. Nevertheless, there are numerous applications being operated at high temperatures. Thus, a surface exhibiting antifouling characteristic over a wide temperature range is required. In this study, we demonstrate that a double re-entrant pillar (DRP) array surface possesses a wide-temperature antifouling characteristic. Although the silicon dioxide top surface of the pillar is hydrophilic, the upward surface tension force from the DRPs prevents the impacting droplets from penetrating the pillar array. Thus, the impacting droplets bounce back from the surface without leaving residues on it at temperatures from 25 to 560°C. By contrast, the impurities of the impacting droplets are retained on an SHB surface composed of a silicon nanowire array at various temperatures. The wide-temperature antifouling property of the DRP surface can be used for preventing fouling in many industrial systems. [Display omitted]</description><subject>Antifouling</subject><subject>Arrays</subject><subject>Double re-entrant pillar array</subject><subject>Droplet</subject><subject>Droplets</subject><subject>High temperature</subject><subject>Hydrophobicity</subject><subject>Nanowires</subject><subject>Silicon dioxide</subject><subject>Silicon nanowire array</subject><subject>Solid surfaces</subject><subject>Superhydrophobic</subject><subject>Surface tension</subject><subject>Temperature</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxDAQhoMouH78h4AXL12TtJs0N0X8RPCieAzTdKIp3XadpIL_3i3rzYunYZiX52Uexs6lWEoh9UW3jN0HQl5DSplgSAFpqYSSS6mkNPUeW8ja2ELJ2u6zhRDSFLaU4pAdpdTNq6j0gr29xRaLjOsNEuSJkMOQYxinPg7v3H8Agc9IMeXo-Rg48Hacmh45YYHDXJz5JvY9EAci-OZpogAeT9hBgD7h6e88Zq-3Ny_X98XT893D9dVT4UsjcmEqrHVZi9KvUGDVBAjBgq-1NrLSoIxuggf0DRirvFEi1CvdgLZWrUJry_KYne24Gxo_J0zZdeNEw7bSqVVljTJKzqnLXcrTmBJhcBuKa6BvJ4WbdbrO_dXpZp1up3OLeNwhcPvNV9xek484eGwjoc-uHeP_YT-_woxa</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Huang, Chung-Te</creator><creator>Lee, Meng-Shiue</creator><creator>Lo, Ching-Wen</creator><creator>Hsu, Wensyang</creator><creator>Lu, Ming-Chang</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1186-0191</orcidid><orcidid>https://orcid.org/0000-0002-4865-8755</orcidid></search><sort><creationdate>202108</creationdate><title>Wide-temperature antifouling characteristic of a double re-entrant pillar array surface</title><author>Huang, Chung-Te ; Lee, Meng-Shiue ; Lo, Ching-Wen ; Hsu, Wensyang ; Lu, Ming-Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-74e863803c5e0e4bfaff9ac8667146a276bfcaecba792c720f856ba69925fd933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antifouling</topic><topic>Arrays</topic><topic>Double re-entrant pillar array</topic><topic>Droplet</topic><topic>Droplets</topic><topic>High temperature</topic><topic>Hydrophobicity</topic><topic>Nanowires</topic><topic>Silicon dioxide</topic><topic>Silicon nanowire array</topic><topic>Solid surfaces</topic><topic>Superhydrophobic</topic><topic>Surface tension</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Chung-Te</creatorcontrib><creatorcontrib>Lee, Meng-Shiue</creatorcontrib><creatorcontrib>Lo, Ching-Wen</creatorcontrib><creatorcontrib>Hsu, Wensyang</creatorcontrib><creatorcontrib>Lu, Ming-Chang</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Chung-Te</au><au>Lee, Meng-Shiue</au><au>Lo, Ching-Wen</au><au>Hsu, Wensyang</au><au>Lu, Ming-Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wide-temperature antifouling characteristic of a double re-entrant pillar array surface</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2021-08</date><risdate>2021</risdate><volume>175</volume><spage>121178</spage><pages>121178-</pages><artnum>121178</artnum><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•The droplet impacting dynamics on the HB, HP, SHB, and DRP surfaces were studied.•The DRP surface exhibits the antifouling characteristic from 25 to 560°C.•A physical model is provided to explain the droplet impacting dynamics on the DRP surface.•The DRP surface pushes the high-temperature limit for antifouling. Fouling causes numerous adverse effects on various types of systems. In addition, clean fouling on a solid surface is cost-intensive and time-consuming. Superhydrophobic (SHB) surfaces with a water-repellent property can potentially be used for antifouling. However, SHB surfaces lose their antifouling property at high temperatures because of the failure of the hydrophobic coating on them. Nevertheless, there are numerous applications being operated at high temperatures. Thus, a surface exhibiting antifouling characteristic over a wide temperature range is required. In this study, we demonstrate that a double re-entrant pillar (DRP) array surface possesses a wide-temperature antifouling characteristic. Although the silicon dioxide top surface of the pillar is hydrophilic, the upward surface tension force from the DRPs prevents the impacting droplets from penetrating the pillar array. Thus, the impacting droplets bounce back from the surface without leaving residues on it at temperatures from 25 to 560°C. By contrast, the impurities of the impacting droplets are retained on an SHB surface composed of a silicon nanowire array at various temperatures. The wide-temperature antifouling property of the DRP surface can be used for preventing fouling in many industrial systems. [Display omitted]</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2021.121178</doi><orcidid>https://orcid.org/0000-0002-1186-0191</orcidid><orcidid>https://orcid.org/0000-0002-4865-8755</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2021-08, Vol.175, p.121178, Article 121178
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_journals_2549727213
source Elsevier ScienceDirect Journals Complete
subjects Antifouling
Arrays
Double re-entrant pillar array
Droplet
Droplets
High temperature
Hydrophobicity
Nanowires
Silicon dioxide
Silicon nanowire array
Solid surfaces
Superhydrophobic
Surface tension
Temperature
title Wide-temperature antifouling characteristic of a double re-entrant pillar array surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T21%3A43%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wide-temperature%20antifouling%20characteristic%20of%20a%20double%20re-entrant%20pillar%20array%20surface&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Huang,%20Chung-Te&rft.date=2021-08&rft.volume=175&rft.spage=121178&rft.pages=121178-&rft.artnum=121178&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2021.121178&rft_dat=%3Cproquest_cross%3E2549727213%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549727213&rft_id=info:pmid/&rft_els_id=S0017931021002817&rfr_iscdi=true