Fatigue crack growth microstructural mechanisms and texture-sensitive predictive modeling of lightweight structural metals

•Slip length controls crack growth behavior in studied lightweight structural alloys.•Critical stress intensity and grain size control intergranular failure transition.•Design maps visually interpolate crack growth mechanisms to untested stress ratios.•Grain-sensitive model predicts microstructurall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fatigue 2021-08, Vol.149, p.106278, Article 106278
Hauptverfasser: Gavras, Anastasios G., Spangenberger, Anthony G., Lados, Diana A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106278
container_title International journal of fatigue
container_volume 149
creator Gavras, Anastasios G.
Spangenberger, Anthony G.
Lados, Diana A.
description •Slip length controls crack growth behavior in studied lightweight structural alloys.•Critical stress intensity and grain size control intergranular failure transition.•Design maps visually interpolate crack growth mechanisms to untested stress ratios.•Grain-sensitive model predicts microstructurally small crack growth rates well. Long and small fatigue crack growth (FCG) mechanisms of various light structural aluminum and titanium alloys were studied with respect to microstructure, stress ratio, and initial flaw size and related to the effective slip length (grain and phase boundaries). Damage mechanism maps were developed to provide design tools to improve material selection for safety-critical structural components. A predictive model for grain size-controlled microstructurally small FCG was developed with consideration of crack size, grain orientation, and the stochastic effects of discrete microstructural interactions. The model allows for rapid estimation of small FCG behavior and agrees well with experimental data.
doi_str_mv 10.1016/j.ijfatigue.2021.106278
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2549726043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142112321001389</els_id><sourcerecordid>2549726043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-87f76e66d3c029cee91ffea5a7bb78189bfa58acaa153f6904986a8b6e0f39e83</originalsourceid><addsrcrecordid>eNqFkElPwzAQhS0EEmX5DVjinOIl8XJEiE2qxAXOluuMW4cmKbbD9utJCULixGVm9DTvjeZD6IySOSVUXDTz0Hibw2qAOSOMjqpgUu2hGVVSF7ys2D6aEVqyglLGD9FRSg0hRBNZzdDnzWTFLlr3jFexf8tr3AYX-5Tj4PIQ7Qa34Na2C6lN2HY1zvA-6lAk6FLI4RXwNkId3PfY9jVsQrfCvcebsFrnN9hV_Ccu2006QQd-bHD604_R083149VdsXi4vb-6XBSOlzwXSnopQIiaO8K0A9DUe7CVlculVFTppbeVss5aWnEvNCm1ElYtBRDPNSh-jM6n3G3sXwZI2TT9ELvxpGFVqSUTpOTjlpy2dp-nCN5sY2ht_DCUmB1o05hf0GYH2kygR-fl5ITxidcA0SQXoHMjkQgum7oP_2Z8AXehj5E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549726043</pqid></control><display><type>article</type><title>Fatigue crack growth microstructural mechanisms and texture-sensitive predictive modeling of lightweight structural metals</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Gavras, Anastasios G. ; Spangenberger, Anthony G. ; Lados, Diana A.</creator><creatorcontrib>Gavras, Anastasios G. ; Spangenberger, Anthony G. ; Lados, Diana A.</creatorcontrib><description>•Slip length controls crack growth behavior in studied lightweight structural alloys.•Critical stress intensity and grain size control intergranular failure transition.•Design maps visually interpolate crack growth mechanisms to untested stress ratios.•Grain-sensitive model predicts microstructurally small crack growth rates well. Long and small fatigue crack growth (FCG) mechanisms of various light structural aluminum and titanium alloys were studied with respect to microstructure, stress ratio, and initial flaw size and related to the effective slip length (grain and phase boundaries). Damage mechanism maps were developed to provide design tools to improve material selection for safety-critical structural components. A predictive model for grain size-controlled microstructurally small FCG was developed with consideration of crack size, grain orientation, and the stochastic effects of discrete microstructural interactions. The model allows for rapid estimation of small FCG behavior and agrees well with experimental data.</description><identifier>ISSN: 0142-1123</identifier><identifier>EISSN: 1879-3452</identifier><identifier>DOI: 10.1016/j.ijfatigue.2021.106278</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Aluminum ; Aluminum alloys ; Crack propagation ; Fatigue crack growth ; Fatigue failure ; Fracture mechanics ; Grain orientation ; Grain size ; Materials fatigue ; Materials selection ; Metal fatigue ; Microstructure ; Prediction models ; Safety critical ; Stress ratio ; Titanium alloys ; Titanium base alloys</subject><ispartof>International journal of fatigue, 2021-08, Vol.149, p.106278, Article 106278</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-87f76e66d3c029cee91ffea5a7bb78189bfa58acaa153f6904986a8b6e0f39e83</citedby><cites>FETCH-LOGICAL-c343t-87f76e66d3c029cee91ffea5a7bb78189bfa58acaa153f6904986a8b6e0f39e83</cites><orcidid>0000-0002-7940-9778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142112321001389$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Gavras, Anastasios G.</creatorcontrib><creatorcontrib>Spangenberger, Anthony G.</creatorcontrib><creatorcontrib>Lados, Diana A.</creatorcontrib><title>Fatigue crack growth microstructural mechanisms and texture-sensitive predictive modeling of lightweight structural metals</title><title>International journal of fatigue</title><description>•Slip length controls crack growth behavior in studied lightweight structural alloys.•Critical stress intensity and grain size control intergranular failure transition.•Design maps visually interpolate crack growth mechanisms to untested stress ratios.•Grain-sensitive model predicts microstructurally small crack growth rates well. Long and small fatigue crack growth (FCG) mechanisms of various light structural aluminum and titanium alloys were studied with respect to microstructure, stress ratio, and initial flaw size and related to the effective slip length (grain and phase boundaries). Damage mechanism maps were developed to provide design tools to improve material selection for safety-critical structural components. A predictive model for grain size-controlled microstructurally small FCG was developed with consideration of crack size, grain orientation, and the stochastic effects of discrete microstructural interactions. The model allows for rapid estimation of small FCG behavior and agrees well with experimental data.</description><subject>Aluminum</subject><subject>Aluminum alloys</subject><subject>Crack propagation</subject><subject>Fatigue crack growth</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>Grain orientation</subject><subject>Grain size</subject><subject>Materials fatigue</subject><subject>Materials selection</subject><subject>Metal fatigue</subject><subject>Microstructure</subject><subject>Prediction models</subject><subject>Safety critical</subject><subject>Stress ratio</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><issn>0142-1123</issn><issn>1879-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkElPwzAQhS0EEmX5DVjinOIl8XJEiE2qxAXOluuMW4cmKbbD9utJCULixGVm9DTvjeZD6IySOSVUXDTz0Hibw2qAOSOMjqpgUu2hGVVSF7ys2D6aEVqyglLGD9FRSg0hRBNZzdDnzWTFLlr3jFexf8tr3AYX-5Tj4PIQ7Qa34Na2C6lN2HY1zvA-6lAk6FLI4RXwNkId3PfY9jVsQrfCvcebsFrnN9hV_Ccu2006QQd-bHD604_R083149VdsXi4vb-6XBSOlzwXSnopQIiaO8K0A9DUe7CVlculVFTppbeVss5aWnEvNCm1ElYtBRDPNSh-jM6n3G3sXwZI2TT9ELvxpGFVqSUTpOTjlpy2dp-nCN5sY2ht_DCUmB1o05hf0GYH2kygR-fl5ITxidcA0SQXoHMjkQgum7oP_2Z8AXehj5E</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Gavras, Anastasios G.</creator><creator>Spangenberger, Anthony G.</creator><creator>Lados, Diana A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-7940-9778</orcidid></search><sort><creationdate>202108</creationdate><title>Fatigue crack growth microstructural mechanisms and texture-sensitive predictive modeling of lightweight structural metals</title><author>Gavras, Anastasios G. ; Spangenberger, Anthony G. ; Lados, Diana A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-87f76e66d3c029cee91ffea5a7bb78189bfa58acaa153f6904986a8b6e0f39e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum</topic><topic>Aluminum alloys</topic><topic>Crack propagation</topic><topic>Fatigue crack growth</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>Grain orientation</topic><topic>Grain size</topic><topic>Materials fatigue</topic><topic>Materials selection</topic><topic>Metal fatigue</topic><topic>Microstructure</topic><topic>Prediction models</topic><topic>Safety critical</topic><topic>Stress ratio</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gavras, Anastasios G.</creatorcontrib><creatorcontrib>Spangenberger, Anthony G.</creatorcontrib><creatorcontrib>Lados, Diana A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of fatigue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gavras, Anastasios G.</au><au>Spangenberger, Anthony G.</au><au>Lados, Diana A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue crack growth microstructural mechanisms and texture-sensitive predictive modeling of lightweight structural metals</atitle><jtitle>International journal of fatigue</jtitle><date>2021-08</date><risdate>2021</risdate><volume>149</volume><spage>106278</spage><pages>106278-</pages><artnum>106278</artnum><issn>0142-1123</issn><eissn>1879-3452</eissn><abstract>•Slip length controls crack growth behavior in studied lightweight structural alloys.•Critical stress intensity and grain size control intergranular failure transition.•Design maps visually interpolate crack growth mechanisms to untested stress ratios.•Grain-sensitive model predicts microstructurally small crack growth rates well. Long and small fatigue crack growth (FCG) mechanisms of various light structural aluminum and titanium alloys were studied with respect to microstructure, stress ratio, and initial flaw size and related to the effective slip length (grain and phase boundaries). Damage mechanism maps were developed to provide design tools to improve material selection for safety-critical structural components. A predictive model for grain size-controlled microstructurally small FCG was developed with consideration of crack size, grain orientation, and the stochastic effects of discrete microstructural interactions. The model allows for rapid estimation of small FCG behavior and agrees well with experimental data.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijfatigue.2021.106278</doi><orcidid>https://orcid.org/0000-0002-7940-9778</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0142-1123
ispartof International journal of fatigue, 2021-08, Vol.149, p.106278, Article 106278
issn 0142-1123
1879-3452
language eng
recordid cdi_proquest_journals_2549726043
source Elsevier ScienceDirect Journals Complete
subjects Aluminum
Aluminum alloys
Crack propagation
Fatigue crack growth
Fatigue failure
Fracture mechanics
Grain orientation
Grain size
Materials fatigue
Materials selection
Metal fatigue
Microstructure
Prediction models
Safety critical
Stress ratio
Titanium alloys
Titanium base alloys
title Fatigue crack growth microstructural mechanisms and texture-sensitive predictive modeling of lightweight structural metals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T20%3A34%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20crack%20growth%20microstructural%20mechanisms%20and%20texture-sensitive%20predictive%20modeling%20of%20lightweight%20structural%20metals&rft.jtitle=International%20journal%20of%20fatigue&rft.au=Gavras,%20Anastasios%20G.&rft.date=2021-08&rft.volume=149&rft.spage=106278&rft.pages=106278-&rft.artnum=106278&rft.issn=0142-1123&rft.eissn=1879-3452&rft_id=info:doi/10.1016/j.ijfatigue.2021.106278&rft_dat=%3Cproquest_cross%3E2549726043%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549726043&rft_id=info:pmid/&rft_els_id=S0142112321001389&rfr_iscdi=true