Fatigue crack growth microstructural mechanisms and texture-sensitive predictive modeling of lightweight structural metals
•Slip length controls crack growth behavior in studied lightweight structural alloys.•Critical stress intensity and grain size control intergranular failure transition.•Design maps visually interpolate crack growth mechanisms to untested stress ratios.•Grain-sensitive model predicts microstructurall...
Gespeichert in:
Veröffentlicht in: | International journal of fatigue 2021-08, Vol.149, p.106278, Article 106278 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 106278 |
container_title | International journal of fatigue |
container_volume | 149 |
creator | Gavras, Anastasios G. Spangenberger, Anthony G. Lados, Diana A. |
description | •Slip length controls crack growth behavior in studied lightweight structural alloys.•Critical stress intensity and grain size control intergranular failure transition.•Design maps visually interpolate crack growth mechanisms to untested stress ratios.•Grain-sensitive model predicts microstructurally small crack growth rates well.
Long and small fatigue crack growth (FCG) mechanisms of various light structural aluminum and titanium alloys were studied with respect to microstructure, stress ratio, and initial flaw size and related to the effective slip length (grain and phase boundaries). Damage mechanism maps were developed to provide design tools to improve material selection for safety-critical structural components. A predictive model for grain size-controlled microstructurally small FCG was developed with consideration of crack size, grain orientation, and the stochastic effects of discrete microstructural interactions. The model allows for rapid estimation of small FCG behavior and agrees well with experimental data. |
doi_str_mv | 10.1016/j.ijfatigue.2021.106278 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2549726043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142112321001389</els_id><sourcerecordid>2549726043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-87f76e66d3c029cee91ffea5a7bb78189bfa58acaa153f6904986a8b6e0f39e83</originalsourceid><addsrcrecordid>eNqFkElPwzAQhS0EEmX5DVjinOIl8XJEiE2qxAXOluuMW4cmKbbD9utJCULixGVm9DTvjeZD6IySOSVUXDTz0Hibw2qAOSOMjqpgUu2hGVVSF7ys2D6aEVqyglLGD9FRSg0hRBNZzdDnzWTFLlr3jFexf8tr3AYX-5Tj4PIQ7Qa34Na2C6lN2HY1zvA-6lAk6FLI4RXwNkId3PfY9jVsQrfCvcebsFrnN9hV_Ccu2006QQd-bHD604_R083149VdsXi4vb-6XBSOlzwXSnopQIiaO8K0A9DUe7CVlculVFTppbeVss5aWnEvNCm1ElYtBRDPNSh-jM6n3G3sXwZI2TT9ELvxpGFVqSUTpOTjlpy2dp-nCN5sY2ht_DCUmB1o05hf0GYH2kygR-fl5ITxidcA0SQXoHMjkQgum7oP_2Z8AXehj5E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549726043</pqid></control><display><type>article</type><title>Fatigue crack growth microstructural mechanisms and texture-sensitive predictive modeling of lightweight structural metals</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Gavras, Anastasios G. ; Spangenberger, Anthony G. ; Lados, Diana A.</creator><creatorcontrib>Gavras, Anastasios G. ; Spangenberger, Anthony G. ; Lados, Diana A.</creatorcontrib><description>•Slip length controls crack growth behavior in studied lightweight structural alloys.•Critical stress intensity and grain size control intergranular failure transition.•Design maps visually interpolate crack growth mechanisms to untested stress ratios.•Grain-sensitive model predicts microstructurally small crack growth rates well.
Long and small fatigue crack growth (FCG) mechanisms of various light structural aluminum and titanium alloys were studied with respect to microstructure, stress ratio, and initial flaw size and related to the effective slip length (grain and phase boundaries). Damage mechanism maps were developed to provide design tools to improve material selection for safety-critical structural components. A predictive model for grain size-controlled microstructurally small FCG was developed with consideration of crack size, grain orientation, and the stochastic effects of discrete microstructural interactions. The model allows for rapid estimation of small FCG behavior and agrees well with experimental data.</description><identifier>ISSN: 0142-1123</identifier><identifier>EISSN: 1879-3452</identifier><identifier>DOI: 10.1016/j.ijfatigue.2021.106278</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Aluminum ; Aluminum alloys ; Crack propagation ; Fatigue crack growth ; Fatigue failure ; Fracture mechanics ; Grain orientation ; Grain size ; Materials fatigue ; Materials selection ; Metal fatigue ; Microstructure ; Prediction models ; Safety critical ; Stress ratio ; Titanium alloys ; Titanium base alloys</subject><ispartof>International journal of fatigue, 2021-08, Vol.149, p.106278, Article 106278</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-87f76e66d3c029cee91ffea5a7bb78189bfa58acaa153f6904986a8b6e0f39e83</citedby><cites>FETCH-LOGICAL-c343t-87f76e66d3c029cee91ffea5a7bb78189bfa58acaa153f6904986a8b6e0f39e83</cites><orcidid>0000-0002-7940-9778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142112321001389$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Gavras, Anastasios G.</creatorcontrib><creatorcontrib>Spangenberger, Anthony G.</creatorcontrib><creatorcontrib>Lados, Diana A.</creatorcontrib><title>Fatigue crack growth microstructural mechanisms and texture-sensitive predictive modeling of lightweight structural metals</title><title>International journal of fatigue</title><description>•Slip length controls crack growth behavior in studied lightweight structural alloys.•Critical stress intensity and grain size control intergranular failure transition.•Design maps visually interpolate crack growth mechanisms to untested stress ratios.•Grain-sensitive model predicts microstructurally small crack growth rates well.
Long and small fatigue crack growth (FCG) mechanisms of various light structural aluminum and titanium alloys were studied with respect to microstructure, stress ratio, and initial flaw size and related to the effective slip length (grain and phase boundaries). Damage mechanism maps were developed to provide design tools to improve material selection for safety-critical structural components. A predictive model for grain size-controlled microstructurally small FCG was developed with consideration of crack size, grain orientation, and the stochastic effects of discrete microstructural interactions. The model allows for rapid estimation of small FCG behavior and agrees well with experimental data.</description><subject>Aluminum</subject><subject>Aluminum alloys</subject><subject>Crack propagation</subject><subject>Fatigue crack growth</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>Grain orientation</subject><subject>Grain size</subject><subject>Materials fatigue</subject><subject>Materials selection</subject><subject>Metal fatigue</subject><subject>Microstructure</subject><subject>Prediction models</subject><subject>Safety critical</subject><subject>Stress ratio</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><issn>0142-1123</issn><issn>1879-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkElPwzAQhS0EEmX5DVjinOIl8XJEiE2qxAXOluuMW4cmKbbD9utJCULixGVm9DTvjeZD6IySOSVUXDTz0Hibw2qAOSOMjqpgUu2hGVVSF7ys2D6aEVqyglLGD9FRSg0hRBNZzdDnzWTFLlr3jFexf8tr3AYX-5Tj4PIQ7Qa34Na2C6lN2HY1zvA-6lAk6FLI4RXwNkId3PfY9jVsQrfCvcebsFrnN9hV_Ccu2006QQd-bHD604_R083149VdsXi4vb-6XBSOlzwXSnopQIiaO8K0A9DUe7CVlculVFTppbeVss5aWnEvNCm1ElYtBRDPNSh-jM6n3G3sXwZI2TT9ELvxpGFVqSUTpOTjlpy2dp-nCN5sY2ht_DCUmB1o05hf0GYH2kygR-fl5ITxidcA0SQXoHMjkQgum7oP_2Z8AXehj5E</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Gavras, Anastasios G.</creator><creator>Spangenberger, Anthony G.</creator><creator>Lados, Diana A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-7940-9778</orcidid></search><sort><creationdate>202108</creationdate><title>Fatigue crack growth microstructural mechanisms and texture-sensitive predictive modeling of lightweight structural metals</title><author>Gavras, Anastasios G. ; Spangenberger, Anthony G. ; Lados, Diana A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-87f76e66d3c029cee91ffea5a7bb78189bfa58acaa153f6904986a8b6e0f39e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum</topic><topic>Aluminum alloys</topic><topic>Crack propagation</topic><topic>Fatigue crack growth</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>Grain orientation</topic><topic>Grain size</topic><topic>Materials fatigue</topic><topic>Materials selection</topic><topic>Metal fatigue</topic><topic>Microstructure</topic><topic>Prediction models</topic><topic>Safety critical</topic><topic>Stress ratio</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gavras, Anastasios G.</creatorcontrib><creatorcontrib>Spangenberger, Anthony G.</creatorcontrib><creatorcontrib>Lados, Diana A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of fatigue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gavras, Anastasios G.</au><au>Spangenberger, Anthony G.</au><au>Lados, Diana A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue crack growth microstructural mechanisms and texture-sensitive predictive modeling of lightweight structural metals</atitle><jtitle>International journal of fatigue</jtitle><date>2021-08</date><risdate>2021</risdate><volume>149</volume><spage>106278</spage><pages>106278-</pages><artnum>106278</artnum><issn>0142-1123</issn><eissn>1879-3452</eissn><abstract>•Slip length controls crack growth behavior in studied lightweight structural alloys.•Critical stress intensity and grain size control intergranular failure transition.•Design maps visually interpolate crack growth mechanisms to untested stress ratios.•Grain-sensitive model predicts microstructurally small crack growth rates well.
Long and small fatigue crack growth (FCG) mechanisms of various light structural aluminum and titanium alloys were studied with respect to microstructure, stress ratio, and initial flaw size and related to the effective slip length (grain and phase boundaries). Damage mechanism maps were developed to provide design tools to improve material selection for safety-critical structural components. A predictive model for grain size-controlled microstructurally small FCG was developed with consideration of crack size, grain orientation, and the stochastic effects of discrete microstructural interactions. The model allows for rapid estimation of small FCG behavior and agrees well with experimental data.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijfatigue.2021.106278</doi><orcidid>https://orcid.org/0000-0002-7940-9778</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-1123 |
ispartof | International journal of fatigue, 2021-08, Vol.149, p.106278, Article 106278 |
issn | 0142-1123 1879-3452 |
language | eng |
recordid | cdi_proquest_journals_2549726043 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Aluminum Aluminum alloys Crack propagation Fatigue crack growth Fatigue failure Fracture mechanics Grain orientation Grain size Materials fatigue Materials selection Metal fatigue Microstructure Prediction models Safety critical Stress ratio Titanium alloys Titanium base alloys |
title | Fatigue crack growth microstructural mechanisms and texture-sensitive predictive modeling of lightweight structural metals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T20%3A34%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20crack%20growth%20microstructural%20mechanisms%20and%20texture-sensitive%20predictive%20modeling%20of%20lightweight%20structural%20metals&rft.jtitle=International%20journal%20of%20fatigue&rft.au=Gavras,%20Anastasios%20G.&rft.date=2021-08&rft.volume=149&rft.spage=106278&rft.pages=106278-&rft.artnum=106278&rft.issn=0142-1123&rft.eissn=1879-3452&rft_id=info:doi/10.1016/j.ijfatigue.2021.106278&rft_dat=%3Cproquest_cross%3E2549726043%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549726043&rft_id=info:pmid/&rft_els_id=S0142112321001389&rfr_iscdi=true |