Boosting the efficiency of GeSe solar cells by low-temperature treatment of p-n junction

Germanium monoselenide (GeSe) is an emerging promising photovoltaic absorber material due to its attractive optoelectronic properties as well as non-toxic and earth-abundant constitutes. However, all previously reported GeSe solar cells rely on a superstrate configuration coupled with a CdS buffer l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China materials 2021-09, Vol.64 (9), p.2118-2126
Hauptverfasser: Liu, Shun-Chang, Li, Zongbao, Wu, Jinpeng, Zhang, Xing, Feng, Mingjie, Xue, Ding-Jiang, Hu, Jin-Song
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2126
container_issue 9
container_start_page 2118
container_title Science China materials
container_volume 64
creator Liu, Shun-Chang
Li, Zongbao
Wu, Jinpeng
Zhang, Xing
Feng, Mingjie
Xue, Ding-Jiang
Hu, Jin-Song
description Germanium monoselenide (GeSe) is an emerging promising photovoltaic absorber material due to its attractive optoelectronic properties as well as non-toxic and earth-abundant constitutes. However, all previously reported GeSe solar cells rely on a superstrate configuration coupled with a CdS buffer layer, and suffer from unsatisfactory performance. Here we demonstrate that this low efficiency arises from the inevitable high-temperature treatment of p-n junction in superstrate configuration. This results in the diffusion of Cd atoms from CdS layer into GeSe film that introduces detrimental deep trap states inside the bandgap of GeSe (∼0.34 eV below conduction band minimum). We adopt therefore a substrate configuration that enables the deposition of CdS atop pre-deposited polycrystalline GeSe film at room temperature, avoiding the Cd diffusion. By optimizing the annealing temperature of complete devices via a high-throughput screening method, the resulting substrate solar cells annealed at 150°C achieve an efficiency of 3.1%, two times that of the best previously reported superstrate GeSe results.
doi_str_mv 10.1007/s40843-020-1617-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2549709054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2549709054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-9548e7e30e79f6ad90323e0ea5d9a6f4accff9778d663bab073de6e40595d6213</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYsoOIzzA9wFXEdvmkebpQ6-YMCFCu5Cpr0ZO3SamqQ48-_tUMGVq3sW5zsXviy7ZHDNAIqbKKAUnEIOlClW0P1JNsuZ1lRIYKdjBi1pmefqPFvEuAUApiRjupxlH3fex9R0G5I-kaBzTdVgVx2Id-QRX5FE39pAKmzbSNYH0vpvmnDXY7BpCEhSQJt22KUj0NOObIeuSo3vLrIzZ9uIi987z94f7t-WT3T18vi8vF3RikudqJaixAI5YKGdsrUGnnMEtLLWVjlhq8o5XRRlrRRf2zUUvEaFAqSWtcoZn2dX024f_NeAMZmtH0I3vjS5FLoADVKMLTa1quBjDOhMH5qdDQfDwBwdmsmhGR2ao0OzH5l8YuLY7TYY_pb_h34AczB0wQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549709054</pqid></control><display><type>article</type><title>Boosting the efficiency of GeSe solar cells by low-temperature treatment of p-n junction</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Liu, Shun-Chang ; Li, Zongbao ; Wu, Jinpeng ; Zhang, Xing ; Feng, Mingjie ; Xue, Ding-Jiang ; Hu, Jin-Song</creator><creatorcontrib>Liu, Shun-Chang ; Li, Zongbao ; Wu, Jinpeng ; Zhang, Xing ; Feng, Mingjie ; Xue, Ding-Jiang ; Hu, Jin-Song</creatorcontrib><description>Germanium monoselenide (GeSe) is an emerging promising photovoltaic absorber material due to its attractive optoelectronic properties as well as non-toxic and earth-abundant constitutes. However, all previously reported GeSe solar cells rely on a superstrate configuration coupled with a CdS buffer layer, and suffer from unsatisfactory performance. Here we demonstrate that this low efficiency arises from the inevitable high-temperature treatment of p-n junction in superstrate configuration. This results in the diffusion of Cd atoms from CdS layer into GeSe film that introduces detrimental deep trap states inside the bandgap of GeSe (∼0.34 eV below conduction band minimum). We adopt therefore a substrate configuration that enables the deposition of CdS atop pre-deposited polycrystalline GeSe film at room temperature, avoiding the Cd diffusion. By optimizing the annealing temperature of complete devices via a high-throughput screening method, the resulting substrate solar cells annealed at 150°C achieve an efficiency of 3.1%, two times that of the best previously reported superstrate GeSe results.</description><identifier>ISSN: 2095-8226</identifier><identifier>EISSN: 2199-4501</identifier><identifier>DOI: 10.1007/s40843-020-1617-x</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Annealing ; Buffer layers ; Chemistry and Materials Science ; Chemistry/Food Science ; Conduction bands ; Configurations ; Diffusion layers ; Efficiency ; Germanium ; High temperature ; Low temperature ; Materials Science ; Optoelectronics ; P-n junctions ; Photovoltaic cells ; Room temperature ; Solar cells ; Substrates</subject><ispartof>Science China materials, 2021-09, Vol.64 (9), p.2118-2126</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-9548e7e30e79f6ad90323e0ea5d9a6f4accff9778d663bab073de6e40595d6213</citedby><cites>FETCH-LOGICAL-c359t-9548e7e30e79f6ad90323e0ea5d9a6f4accff9778d663bab073de6e40595d6213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40843-020-1617-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40843-020-1617-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liu, Shun-Chang</creatorcontrib><creatorcontrib>Li, Zongbao</creatorcontrib><creatorcontrib>Wu, Jinpeng</creatorcontrib><creatorcontrib>Zhang, Xing</creatorcontrib><creatorcontrib>Feng, Mingjie</creatorcontrib><creatorcontrib>Xue, Ding-Jiang</creatorcontrib><creatorcontrib>Hu, Jin-Song</creatorcontrib><title>Boosting the efficiency of GeSe solar cells by low-temperature treatment of p-n junction</title><title>Science China materials</title><addtitle>Sci. China Mater</addtitle><description>Germanium monoselenide (GeSe) is an emerging promising photovoltaic absorber material due to its attractive optoelectronic properties as well as non-toxic and earth-abundant constitutes. However, all previously reported GeSe solar cells rely on a superstrate configuration coupled with a CdS buffer layer, and suffer from unsatisfactory performance. Here we demonstrate that this low efficiency arises from the inevitable high-temperature treatment of p-n junction in superstrate configuration. This results in the diffusion of Cd atoms from CdS layer into GeSe film that introduces detrimental deep trap states inside the bandgap of GeSe (∼0.34 eV below conduction band minimum). We adopt therefore a substrate configuration that enables the deposition of CdS atop pre-deposited polycrystalline GeSe film at room temperature, avoiding the Cd diffusion. By optimizing the annealing temperature of complete devices via a high-throughput screening method, the resulting substrate solar cells annealed at 150°C achieve an efficiency of 3.1%, two times that of the best previously reported superstrate GeSe results.</description><subject>Annealing</subject><subject>Buffer layers</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Conduction bands</subject><subject>Configurations</subject><subject>Diffusion layers</subject><subject>Efficiency</subject><subject>Germanium</subject><subject>High temperature</subject><subject>Low temperature</subject><subject>Materials Science</subject><subject>Optoelectronics</subject><subject>P-n junctions</subject><subject>Photovoltaic cells</subject><subject>Room temperature</subject><subject>Solar cells</subject><subject>Substrates</subject><issn>2095-8226</issn><issn>2199-4501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYsoOIzzA9wFXEdvmkebpQ6-YMCFCu5Cpr0ZO3SamqQ48-_tUMGVq3sW5zsXviy7ZHDNAIqbKKAUnEIOlClW0P1JNsuZ1lRIYKdjBi1pmefqPFvEuAUApiRjupxlH3fex9R0G5I-kaBzTdVgVx2Id-QRX5FE39pAKmzbSNYH0vpvmnDXY7BpCEhSQJt22KUj0NOObIeuSo3vLrIzZ9uIi987z94f7t-WT3T18vi8vF3RikudqJaixAI5YKGdsrUGnnMEtLLWVjlhq8o5XRRlrRRf2zUUvEaFAqSWtcoZn2dX024f_NeAMZmtH0I3vjS5FLoADVKMLTa1quBjDOhMH5qdDQfDwBwdmsmhGR2ao0OzH5l8YuLY7TYY_pb_h34AczB0wQ</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Liu, Shun-Chang</creator><creator>Li, Zongbao</creator><creator>Wu, Jinpeng</creator><creator>Zhang, Xing</creator><creator>Feng, Mingjie</creator><creator>Xue, Ding-Jiang</creator><creator>Hu, Jin-Song</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210901</creationdate><title>Boosting the efficiency of GeSe solar cells by low-temperature treatment of p-n junction</title><author>Liu, Shun-Chang ; Li, Zongbao ; Wu, Jinpeng ; Zhang, Xing ; Feng, Mingjie ; Xue, Ding-Jiang ; Hu, Jin-Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-9548e7e30e79f6ad90323e0ea5d9a6f4accff9778d663bab073de6e40595d6213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Annealing</topic><topic>Buffer layers</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Conduction bands</topic><topic>Configurations</topic><topic>Diffusion layers</topic><topic>Efficiency</topic><topic>Germanium</topic><topic>High temperature</topic><topic>Low temperature</topic><topic>Materials Science</topic><topic>Optoelectronics</topic><topic>P-n junctions</topic><topic>Photovoltaic cells</topic><topic>Room temperature</topic><topic>Solar cells</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shun-Chang</creatorcontrib><creatorcontrib>Li, Zongbao</creatorcontrib><creatorcontrib>Wu, Jinpeng</creatorcontrib><creatorcontrib>Zhang, Xing</creatorcontrib><creatorcontrib>Feng, Mingjie</creatorcontrib><creatorcontrib>Xue, Ding-Jiang</creatorcontrib><creatorcontrib>Hu, Jin-Song</creatorcontrib><collection>CrossRef</collection><jtitle>Science China materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Shun-Chang</au><au>Li, Zongbao</au><au>Wu, Jinpeng</au><au>Zhang, Xing</au><au>Feng, Mingjie</au><au>Xue, Ding-Jiang</au><au>Hu, Jin-Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting the efficiency of GeSe solar cells by low-temperature treatment of p-n junction</atitle><jtitle>Science China materials</jtitle><stitle>Sci. China Mater</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>64</volume><issue>9</issue><spage>2118</spage><epage>2126</epage><pages>2118-2126</pages><issn>2095-8226</issn><eissn>2199-4501</eissn><abstract>Germanium monoselenide (GeSe) is an emerging promising photovoltaic absorber material due to its attractive optoelectronic properties as well as non-toxic and earth-abundant constitutes. However, all previously reported GeSe solar cells rely on a superstrate configuration coupled with a CdS buffer layer, and suffer from unsatisfactory performance. Here we demonstrate that this low efficiency arises from the inevitable high-temperature treatment of p-n junction in superstrate configuration. This results in the diffusion of Cd atoms from CdS layer into GeSe film that introduces detrimental deep trap states inside the bandgap of GeSe (∼0.34 eV below conduction band minimum). We adopt therefore a substrate configuration that enables the deposition of CdS atop pre-deposited polycrystalline GeSe film at room temperature, avoiding the Cd diffusion. By optimizing the annealing temperature of complete devices via a high-throughput screening method, the resulting substrate solar cells annealed at 150°C achieve an efficiency of 3.1%, two times that of the best previously reported superstrate GeSe results.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s40843-020-1617-x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2095-8226
ispartof Science China materials, 2021-09, Vol.64 (9), p.2118-2126
issn 2095-8226
2199-4501
language eng
recordid cdi_proquest_journals_2549709054
source SpringerLink Journals; Alma/SFX Local Collection
subjects Annealing
Buffer layers
Chemistry and Materials Science
Chemistry/Food Science
Conduction bands
Configurations
Diffusion layers
Efficiency
Germanium
High temperature
Low temperature
Materials Science
Optoelectronics
P-n junctions
Photovoltaic cells
Room temperature
Solar cells
Substrates
title Boosting the efficiency of GeSe solar cells by low-temperature treatment of p-n junction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A23%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20the%20efficiency%20of%20GeSe%20solar%20cells%20by%20low-temperature%20treatment%20of%20p-n%20junction&rft.jtitle=Science%20China%20materials&rft.au=Liu,%20Shun-Chang&rft.date=2021-09-01&rft.volume=64&rft.issue=9&rft.spage=2118&rft.epage=2126&rft.pages=2118-2126&rft.issn=2095-8226&rft.eissn=2199-4501&rft_id=info:doi/10.1007/s40843-020-1617-x&rft_dat=%3Cproquest_cross%3E2549709054%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549709054&rft_id=info:pmid/&rfr_iscdi=true