An Algebraic Analogue of Exel–Pardo C∗-Algebras

We introduce an algebraic version of the Katsura C ∗ -algebra of a pair A , B of integer matrices and an algebraic version of the Exel–Pardo C ∗ -algebra of a self-similar action on a graph. We prove a Graded Uniqueness Theorem for such algebras and construct a homomorphism of the latter into a Stei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebras and representation theory 2021-08, Vol.24 (4), p.877-909
Hauptverfasser: Hazrat, Roozbeh, Pask, David, Sierakowski, Adam, Sims, Aidan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 909
container_issue 4
container_start_page 877
container_title Algebras and representation theory
container_volume 24
creator Hazrat, Roozbeh
Pask, David
Sierakowski, Adam
Sims, Aidan
description We introduce an algebraic version of the Katsura C ∗ -algebra of a pair A , B of integer matrices and an algebraic version of the Exel–Pardo C ∗ -algebra of a self-similar action on a graph. We prove a Graded Uniqueness Theorem for such algebras and construct a homomorphism of the latter into a Steinberg algebra that, under mild conditions, is an isomorphism. Working with Steinberg algebras over non-Hausdorff groupoids we prove that in the unital case, our algebraic version of Katsura C ∗ -algebras are all isomorphic to Steinberg algebras.
doi_str_mv 10.1007/s10468-020-09973-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2549709053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2549709053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c234x-65ea6b5215a2f60aeacc983e3cd48cb39dcf97c55c5e3dad01dad3d27df118f33</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5giMRvOvjiOx6gqH1IlGEBisxx_VK1CU2wqhY2RnYH_119CSiqxsdzd8LyvTg8h5wwuGYC8SgzyoqTAgYJSEml3QEZMSE4VSHXY31gWVHF8PiYnKS0BQBUlGxGsVlnVzH0dzcJm1co07XzjszZk084324-vBxNdm022n990z6VTchRMk_zZfo_J0_X0cXJLZ_c3d5NqRi3HvKOF8KaoBWfC8FCA8cZaVaJH6_LS1qicDUpaIazw6IwD1g90XLrAWBkQx-Ri6F3H9nXj05tetpvYv5g0F7mSoEDsKD5QNrYpRR_0Oi5eTHzXDPROjh7k6F6O_pWjuz6EQyj18Gru41_1P6kfdTBpCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549709053</pqid></control><display><type>article</type><title>An Algebraic Analogue of Exel–Pardo C∗-Algebras</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hazrat, Roozbeh ; Pask, David ; Sierakowski, Adam ; Sims, Aidan</creator><creatorcontrib>Hazrat, Roozbeh ; Pask, David ; Sierakowski, Adam ; Sims, Aidan</creatorcontrib><description>We introduce an algebraic version of the Katsura C ∗ -algebra of a pair A , B of integer matrices and an algebraic version of the Exel–Pardo C ∗ -algebra of a self-similar action on a graph. We prove a Graded Uniqueness Theorem for such algebras and construct a homomorphism of the latter into a Steinberg algebra that, under mild conditions, is an isomorphism. Working with Steinberg algebras over non-Hausdorff groupoids we prove that in the unital case, our algebraic version of Katsura C ∗ -algebras are all isomorphic to Steinberg algebras.</description><identifier>ISSN: 1386-923X</identifier><identifier>EISSN: 1572-9079</identifier><identifier>DOI: 10.1007/s10468-020-09973-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebra ; Associative Rings and Algebras ; Commutative Rings and Algebras ; Homomorphisms ; Isomorphism ; Mathematics ; Mathematics and Statistics ; Matrix algebra ; Non-associative Rings and Algebras ; Self-similarity ; Uniqueness theorems</subject><ispartof>Algebras and representation theory, 2021-08, Vol.24 (4), p.877-909</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c234x-65ea6b5215a2f60aeacc983e3cd48cb39dcf97c55c5e3dad01dad3d27df118f33</citedby><cites>FETCH-LOGICAL-c234x-65ea6b5215a2f60aeacc983e3cd48cb39dcf97c55c5e3dad01dad3d27df118f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10468-020-09973-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10468-020-09973-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hazrat, Roozbeh</creatorcontrib><creatorcontrib>Pask, David</creatorcontrib><creatorcontrib>Sierakowski, Adam</creatorcontrib><creatorcontrib>Sims, Aidan</creatorcontrib><title>An Algebraic Analogue of Exel–Pardo C∗-Algebras</title><title>Algebras and representation theory</title><addtitle>Algebr Represent Theor</addtitle><description>We introduce an algebraic version of the Katsura C ∗ -algebra of a pair A , B of integer matrices and an algebraic version of the Exel–Pardo C ∗ -algebra of a self-similar action on a graph. We prove a Graded Uniqueness Theorem for such algebras and construct a homomorphism of the latter into a Steinberg algebra that, under mild conditions, is an isomorphism. Working with Steinberg algebras over non-Hausdorff groupoids we prove that in the unital case, our algebraic version of Katsura C ∗ -algebras are all isomorphic to Steinberg algebras.</description><subject>Algebra</subject><subject>Associative Rings and Algebras</subject><subject>Commutative Rings and Algebras</subject><subject>Homomorphisms</subject><subject>Isomorphism</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix algebra</subject><subject>Non-associative Rings and Algebras</subject><subject>Self-similarity</subject><subject>Uniqueness theorems</subject><issn>1386-923X</issn><issn>1572-9079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5giMRvOvjiOx6gqH1IlGEBisxx_VK1CU2wqhY2RnYH_119CSiqxsdzd8LyvTg8h5wwuGYC8SgzyoqTAgYJSEml3QEZMSE4VSHXY31gWVHF8PiYnKS0BQBUlGxGsVlnVzH0dzcJm1co07XzjszZk084324-vBxNdm022n990z6VTchRMk_zZfo_J0_X0cXJLZ_c3d5NqRi3HvKOF8KaoBWfC8FCA8cZaVaJH6_LS1qicDUpaIazw6IwD1g90XLrAWBkQx-Ri6F3H9nXj05tetpvYv5g0F7mSoEDsKD5QNrYpRR_0Oi5eTHzXDPROjh7k6F6O_pWjuz6EQyj18Gru41_1P6kfdTBpCg</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Hazrat, Roozbeh</creator><creator>Pask, David</creator><creator>Sierakowski, Adam</creator><creator>Sims, Aidan</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210801</creationdate><title>An Algebraic Analogue of Exel–Pardo C∗-Algebras</title><author>Hazrat, Roozbeh ; Pask, David ; Sierakowski, Adam ; Sims, Aidan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c234x-65ea6b5215a2f60aeacc983e3cd48cb39dcf97c55c5e3dad01dad3d27df118f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Associative Rings and Algebras</topic><topic>Commutative Rings and Algebras</topic><topic>Homomorphisms</topic><topic>Isomorphism</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix algebra</topic><topic>Non-associative Rings and Algebras</topic><topic>Self-similarity</topic><topic>Uniqueness theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hazrat, Roozbeh</creatorcontrib><creatorcontrib>Pask, David</creatorcontrib><creatorcontrib>Sierakowski, Adam</creatorcontrib><creatorcontrib>Sims, Aidan</creatorcontrib><collection>CrossRef</collection><jtitle>Algebras and representation theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hazrat, Roozbeh</au><au>Pask, David</au><au>Sierakowski, Adam</au><au>Sims, Aidan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Algebraic Analogue of Exel–Pardo C∗-Algebras</atitle><jtitle>Algebras and representation theory</jtitle><stitle>Algebr Represent Theor</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>24</volume><issue>4</issue><spage>877</spage><epage>909</epage><pages>877-909</pages><issn>1386-923X</issn><eissn>1572-9079</eissn><abstract>We introduce an algebraic version of the Katsura C ∗ -algebra of a pair A , B of integer matrices and an algebraic version of the Exel–Pardo C ∗ -algebra of a self-similar action on a graph. We prove a Graded Uniqueness Theorem for such algebras and construct a homomorphism of the latter into a Steinberg algebra that, under mild conditions, is an isomorphism. Working with Steinberg algebras over non-Hausdorff groupoids we prove that in the unital case, our algebraic version of Katsura C ∗ -algebras are all isomorphic to Steinberg algebras.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10468-020-09973-x</doi><tpages>33</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1386-923X
ispartof Algebras and representation theory, 2021-08, Vol.24 (4), p.877-909
issn 1386-923X
1572-9079
language eng
recordid cdi_proquest_journals_2549709053
source SpringerLink Journals - AutoHoldings
subjects Algebra
Associative Rings and Algebras
Commutative Rings and Algebras
Homomorphisms
Isomorphism
Mathematics
Mathematics and Statistics
Matrix algebra
Non-associative Rings and Algebras
Self-similarity
Uniqueness theorems
title An Algebraic Analogue of Exel–Pardo C∗-Algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A11%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Algebraic%20Analogue%20of%20Exel%E2%80%93Pardo%20C%E2%88%97-Algebras&rft.jtitle=Algebras%20and%20representation%20theory&rft.au=Hazrat,%20Roozbeh&rft.date=2021-08-01&rft.volume=24&rft.issue=4&rft.spage=877&rft.epage=909&rft.pages=877-909&rft.issn=1386-923X&rft.eissn=1572-9079&rft_id=info:doi/10.1007/s10468-020-09973-x&rft_dat=%3Cproquest_cross%3E2549709053%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549709053&rft_id=info:pmid/&rfr_iscdi=true