An Algebraic Analogue of Exel–Pardo C∗-Algebras

We introduce an algebraic version of the Katsura C ∗ -algebra of a pair A , B of integer matrices and an algebraic version of the Exel–Pardo C ∗ -algebra of a self-similar action on a graph. We prove a Graded Uniqueness Theorem for such algebras and construct a homomorphism of the latter into a Stei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebras and representation theory 2021, Vol.24 (4), p.877-909
Hauptverfasser: Hazrat, Roozbeh, Pask, David, Sierakowski, Adam, Sims, Aidan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce an algebraic version of the Katsura C ∗ -algebra of a pair A , B of integer matrices and an algebraic version of the Exel–Pardo C ∗ -algebra of a self-similar action on a graph. We prove a Graded Uniqueness Theorem for such algebras and construct a homomorphism of the latter into a Steinberg algebra that, under mild conditions, is an isomorphism. Working with Steinberg algebras over non-Hausdorff groupoids we prove that in the unital case, our algebraic version of Katsura C ∗ -algebras are all isomorphic to Steinberg algebras.
ISSN:1386-923X
1572-9079
DOI:10.1007/s10468-020-09973-x