An Algebraic Analogue of Exel–Pardo C∗-Algebras
We introduce an algebraic version of the Katsura C ∗ -algebra of a pair A , B of integer matrices and an algebraic version of the Exel–Pardo C ∗ -algebra of a self-similar action on a graph. We prove a Graded Uniqueness Theorem for such algebras and construct a homomorphism of the latter into a Stei...
Gespeichert in:
Veröffentlicht in: | Algebras and representation theory 2021, Vol.24 (4), p.877-909 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce an algebraic version of the Katsura
C
∗
-algebra of a pair
A
,
B
of integer matrices and an algebraic version of the Exel–Pardo
C
∗
-algebra of a self-similar action on a graph. We prove a Graded Uniqueness Theorem for such algebras and construct a homomorphism of the latter into a Steinberg algebra that, under mild conditions, is an isomorphism. Working with Steinberg algebras over non-Hausdorff groupoids we prove that in the unital case, our algebraic version of Katsura
C
∗
-algebras are all isomorphic to Steinberg algebras. |
---|---|
ISSN: | 1386-923X 1572-9079 |
DOI: | 10.1007/s10468-020-09973-x |