UO2–Y2O3 ceramic nuclear fuel: SPS fabrication, physico-chemical investigation and neutron absorption evaluation

•Promising UO2-Y2O3 ceramic nuclear fuel pellets are fabricated via SPS technique.•Dynamics of UO2-Y2O3 SPS consolidation is comparatively analyzed with that of UO2-Gd2O3 and UO2-Eu2O3.•(U,Y)O2 solid solution formation by SPS is shown for the first time.•Stable pore formation is identified after add...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2021-10, Vol.877, p.160266, Article 160266
Hauptverfasser: Papynov, E.K., Shichalin, O.O., Buravlev, I. Yu, Ivannikov, S.I., Zheleznov, V.V., Portnyagin, A.S., Fedorets, A.N., Shlyk, D. Kh, Sukhorada, A.E., Tarabanova, A.E., Kosyanov, D. Yu, Yagofarov, V. Yu, Tananaev, I.G., Sergienko, V.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 160266
container_title Journal of alloys and compounds
container_volume 877
creator Papynov, E.K.
Shichalin, O.O.
Buravlev, I. Yu
Ivannikov, S.I.
Zheleznov, V.V.
Portnyagin, A.S.
Fedorets, A.N.
Shlyk, D. Kh
Sukhorada, A.E.
Tarabanova, A.E.
Kosyanov, D. Yu
Yagofarov, V. Yu
Tananaev, I.G.
Sergienko, V.I.
description •Promising UO2-Y2O3 ceramic nuclear fuel pellets are fabricated via SPS technique.•Dynamics of UO2-Y2O3 SPS consolidation is comparatively analyzed with that of UO2-Gd2O3 and UO2-Eu2O3.•(U,Y)O2 solid solution formation by SPS is shown for the first time.•Stable pore formation is identified after addition 2 and 8 wt% of Y2O3.•The neutron absorption lab test is performed for SPS nuclear fuel samples with IFBAs. [Display omitted] The paper studies spark plasma sintering of UO2-based ceramics nuclear fuel obtained from a mixture of pristine urania with 2 and 8 wt% of Y2O3 (integral fuel burnable absorber) produced by liquid-phase ultrasonic homogenizing. Densification dynamics of UO2-Y2O3 system is investigated for the first time in the temperature range up to 1250 °C under spark plasma sintering (SPS) conditions followed by a comparative analysis with UO2-Gd2O3 and UO2-Eu2O3 analogs. Earlier unknown data on formation of (U,Y)O2 solid solutions, isostructural to UO2, under SPS conditions is presented. Structural changes manifested in stable pore and defect occurrence within the ceramics bulk are shown to depend on Y2O3 amount proving the occurrence of the Kirkendall effect, which is commonly known phenomenon in the field of traditional methods of fuel manufacturing. Microhardness (HV), compressive strength (σcs) and density (ρ) are found to degrade in the presence of Y2O3, however their values remain within acceptable limits. For the first time, neutron-activation analysis is implemented as a laboratory means to assess neutron absorption efficiency of the SPS fuels containing various IFBA additives (Gd2O3, Eu2O3, Y2O3). These novel results contribute to the fundamental knowledge on the range of possible applications available owing to nonconventional SPS technology, thus extending the methods palette of fuel fabrication as well as providing new characterization approaches to probe important fuel properties for nuclear power engineering field.
doi_str_mv 10.1016/j.jallcom.2021.160266
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2549056600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838821016753</els_id><sourcerecordid>2549056600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-508597bd4049f85d8d48bd5db76664cfddf804c82d98a91262f7e1f465274133</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoOI4-ghBwa2uSJmnqRkS8wcAIMy5chTQXJ6XTjkk7MDvfwTf0Sexc9q7O4ZzvP5cfgEuMUowwv6nSStW1bpcpQQSnmCPC-REYYZFnCeW8OAYjVBCWiEyIU3AWY4UQwkWGRyC8T8nv988HmWZQ26CWXsOm17VVAbre1rdw9jaDTpXBa9X5trmGq8Umet0memEHWtXQN2sbO_-560PVGNjYvgvbvIxtWO3Kdq3qfkecgxOn6mgvDnEM5k-P84eXZDJ9fn24nyQ6y_IuYUiwIi8NRbRwghlhqCgNM2XOOafaGeMEoloQUwhVYMKJyy12lDOSU5xlY3C1H7sK7Vc_HCirtg_NsFESRgvEOEdooNie0qGNMVgnV8EvVdhIjOTWXVnJg7ty667cuzvo7vY6O3yw9jbIqL1ttDU-WN1J0_p_JvwBUrOHDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549056600</pqid></control><display><type>article</type><title>UO2–Y2O3 ceramic nuclear fuel: SPS fabrication, physico-chemical investigation and neutron absorption evaluation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Papynov, E.K. ; Shichalin, O.O. ; Buravlev, I. Yu ; Ivannikov, S.I. ; Zheleznov, V.V. ; Portnyagin, A.S. ; Fedorets, A.N. ; Shlyk, D. Kh ; Sukhorada, A.E. ; Tarabanova, A.E. ; Kosyanov, D. Yu ; Yagofarov, V. Yu ; Tananaev, I.G. ; Sergienko, V.I.</creator><creatorcontrib>Papynov, E.K. ; Shichalin, O.O. ; Buravlev, I. Yu ; Ivannikov, S.I. ; Zheleznov, V.V. ; Portnyagin, A.S. ; Fedorets, A.N. ; Shlyk, D. Kh ; Sukhorada, A.E. ; Tarabanova, A.E. ; Kosyanov, D. Yu ; Yagofarov, V. Yu ; Tananaev, I.G. ; Sergienko, V.I.</creatorcontrib><description>•Promising UO2-Y2O3 ceramic nuclear fuel pellets are fabricated via SPS technique.•Dynamics of UO2-Y2O3 SPS consolidation is comparatively analyzed with that of UO2-Gd2O3 and UO2-Eu2O3.•(U,Y)O2 solid solution formation by SPS is shown for the first time.•Stable pore formation is identified after addition 2 and 8 wt% of Y2O3.•The neutron absorption lab test is performed for SPS nuclear fuel samples with IFBAs. [Display omitted] The paper studies spark plasma sintering of UO2-based ceramics nuclear fuel obtained from a mixture of pristine urania with 2 and 8 wt% of Y2O3 (integral fuel burnable absorber) produced by liquid-phase ultrasonic homogenizing. Densification dynamics of UO2-Y2O3 system is investigated for the first time in the temperature range up to 1250 °C under spark plasma sintering (SPS) conditions followed by a comparative analysis with UO2-Gd2O3 and UO2-Eu2O3 analogs. Earlier unknown data on formation of (U,Y)O2 solid solutions, isostructural to UO2, under SPS conditions is presented. Structural changes manifested in stable pore and defect occurrence within the ceramics bulk are shown to depend on Y2O3 amount proving the occurrence of the Kirkendall effect, which is commonly known phenomenon in the field of traditional methods of fuel manufacturing. Microhardness (HV), compressive strength (σcs) and density (ρ) are found to degrade in the presence of Y2O3, however their values remain within acceptable limits. For the first time, neutron-activation analysis is implemented as a laboratory means to assess neutron absorption efficiency of the SPS fuels containing various IFBA additives (Gd2O3, Eu2O3, Y2O3). These novel results contribute to the fundamental knowledge on the range of possible applications available owing to nonconventional SPS technology, thus extending the methods palette of fuel fabrication as well as providing new characterization approaches to probe important fuel properties for nuclear power engineering field.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2021.160266</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Additives ; Ceramic ; Ceramic nuclear fuels ; Ceramics ; Compressive strength ; Densification ; Europium compounds ; Gadolinium oxides ; Integral fuel burnable absorbers (IFBA) ; Kirkendall effect ; Liquid phases ; Microhardness ; Neutron absorption ; Neutron adsorption ; Nuclear fuel ; Nuclear fuels ; Plasma sintering ; Sintering (powder metallurgy) ; Solid solutions ; Spark plasma sintering ; SPS ; Uranium dioxide ; Uranium dioxide (UO2) ; Yttrium oxide ; Yttrium oxide (Y2O3)</subject><ispartof>Journal of alloys and compounds, 2021-10, Vol.877, p.160266, Article 160266</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 5, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-508597bd4049f85d8d48bd5db76664cfddf804c82d98a91262f7e1f465274133</citedby><cites>FETCH-LOGICAL-c337t-508597bd4049f85d8d48bd5db76664cfddf804c82d98a91262f7e1f465274133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2021.160266$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Papynov, E.K.</creatorcontrib><creatorcontrib>Shichalin, O.O.</creatorcontrib><creatorcontrib>Buravlev, I. Yu</creatorcontrib><creatorcontrib>Ivannikov, S.I.</creatorcontrib><creatorcontrib>Zheleznov, V.V.</creatorcontrib><creatorcontrib>Portnyagin, A.S.</creatorcontrib><creatorcontrib>Fedorets, A.N.</creatorcontrib><creatorcontrib>Shlyk, D. Kh</creatorcontrib><creatorcontrib>Sukhorada, A.E.</creatorcontrib><creatorcontrib>Tarabanova, A.E.</creatorcontrib><creatorcontrib>Kosyanov, D. Yu</creatorcontrib><creatorcontrib>Yagofarov, V. Yu</creatorcontrib><creatorcontrib>Tananaev, I.G.</creatorcontrib><creatorcontrib>Sergienko, V.I.</creatorcontrib><title>UO2–Y2O3 ceramic nuclear fuel: SPS fabrication, physico-chemical investigation and neutron absorption evaluation</title><title>Journal of alloys and compounds</title><description>•Promising UO2-Y2O3 ceramic nuclear fuel pellets are fabricated via SPS technique.•Dynamics of UO2-Y2O3 SPS consolidation is comparatively analyzed with that of UO2-Gd2O3 and UO2-Eu2O3.•(U,Y)O2 solid solution formation by SPS is shown for the first time.•Stable pore formation is identified after addition 2 and 8 wt% of Y2O3.•The neutron absorption lab test is performed for SPS nuclear fuel samples with IFBAs. [Display omitted] The paper studies spark plasma sintering of UO2-based ceramics nuclear fuel obtained from a mixture of pristine urania with 2 and 8 wt% of Y2O3 (integral fuel burnable absorber) produced by liquid-phase ultrasonic homogenizing. Densification dynamics of UO2-Y2O3 system is investigated for the first time in the temperature range up to 1250 °C under spark plasma sintering (SPS) conditions followed by a comparative analysis with UO2-Gd2O3 and UO2-Eu2O3 analogs. Earlier unknown data on formation of (U,Y)O2 solid solutions, isostructural to UO2, under SPS conditions is presented. Structural changes manifested in stable pore and defect occurrence within the ceramics bulk are shown to depend on Y2O3 amount proving the occurrence of the Kirkendall effect, which is commonly known phenomenon in the field of traditional methods of fuel manufacturing. Microhardness (HV), compressive strength (σcs) and density (ρ) are found to degrade in the presence of Y2O3, however their values remain within acceptable limits. For the first time, neutron-activation analysis is implemented as a laboratory means to assess neutron absorption efficiency of the SPS fuels containing various IFBA additives (Gd2O3, Eu2O3, Y2O3). These novel results contribute to the fundamental knowledge on the range of possible applications available owing to nonconventional SPS technology, thus extending the methods palette of fuel fabrication as well as providing new characterization approaches to probe important fuel properties for nuclear power engineering field.</description><subject>Additives</subject><subject>Ceramic</subject><subject>Ceramic nuclear fuels</subject><subject>Ceramics</subject><subject>Compressive strength</subject><subject>Densification</subject><subject>Europium compounds</subject><subject>Gadolinium oxides</subject><subject>Integral fuel burnable absorbers (IFBA)</subject><subject>Kirkendall effect</subject><subject>Liquid phases</subject><subject>Microhardness</subject><subject>Neutron absorption</subject><subject>Neutron adsorption</subject><subject>Nuclear fuel</subject><subject>Nuclear fuels</subject><subject>Plasma sintering</subject><subject>Sintering (powder metallurgy)</subject><subject>Solid solutions</subject><subject>Spark plasma sintering</subject><subject>SPS</subject><subject>Uranium dioxide</subject><subject>Uranium dioxide (UO2)</subject><subject>Yttrium oxide</subject><subject>Yttrium oxide (Y2O3)</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAUhoMoOI4-ghBwa2uSJmnqRkS8wcAIMy5chTQXJ6XTjkk7MDvfwTf0Sexc9q7O4ZzvP5cfgEuMUowwv6nSStW1bpcpQQSnmCPC-REYYZFnCeW8OAYjVBCWiEyIU3AWY4UQwkWGRyC8T8nv988HmWZQ26CWXsOm17VVAbre1rdw9jaDTpXBa9X5trmGq8Umet0memEHWtXQN2sbO_-560PVGNjYvgvbvIxtWO3Kdq3qfkecgxOn6mgvDnEM5k-P84eXZDJ9fn24nyQ6y_IuYUiwIi8NRbRwghlhqCgNM2XOOafaGeMEoloQUwhVYMKJyy12lDOSU5xlY3C1H7sK7Vc_HCirtg_NsFESRgvEOEdooNie0qGNMVgnV8EvVdhIjOTWXVnJg7ty667cuzvo7vY6O3yw9jbIqL1ttDU-WN1J0_p_JvwBUrOHDQ</recordid><startdate>20211005</startdate><enddate>20211005</enddate><creator>Papynov, E.K.</creator><creator>Shichalin, O.O.</creator><creator>Buravlev, I. Yu</creator><creator>Ivannikov, S.I.</creator><creator>Zheleznov, V.V.</creator><creator>Portnyagin, A.S.</creator><creator>Fedorets, A.N.</creator><creator>Shlyk, D. Kh</creator><creator>Sukhorada, A.E.</creator><creator>Tarabanova, A.E.</creator><creator>Kosyanov, D. Yu</creator><creator>Yagofarov, V. Yu</creator><creator>Tananaev, I.G.</creator><creator>Sergienko, V.I.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20211005</creationdate><title>UO2–Y2O3 ceramic nuclear fuel: SPS fabrication, physico-chemical investigation and neutron absorption evaluation</title><author>Papynov, E.K. ; Shichalin, O.O. ; Buravlev, I. Yu ; Ivannikov, S.I. ; Zheleznov, V.V. ; Portnyagin, A.S. ; Fedorets, A.N. ; Shlyk, D. Kh ; Sukhorada, A.E. ; Tarabanova, A.E. ; Kosyanov, D. Yu ; Yagofarov, V. Yu ; Tananaev, I.G. ; Sergienko, V.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-508597bd4049f85d8d48bd5db76664cfddf804c82d98a91262f7e1f465274133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Additives</topic><topic>Ceramic</topic><topic>Ceramic nuclear fuels</topic><topic>Ceramics</topic><topic>Compressive strength</topic><topic>Densification</topic><topic>Europium compounds</topic><topic>Gadolinium oxides</topic><topic>Integral fuel burnable absorbers (IFBA)</topic><topic>Kirkendall effect</topic><topic>Liquid phases</topic><topic>Microhardness</topic><topic>Neutron absorption</topic><topic>Neutron adsorption</topic><topic>Nuclear fuel</topic><topic>Nuclear fuels</topic><topic>Plasma sintering</topic><topic>Sintering (powder metallurgy)</topic><topic>Solid solutions</topic><topic>Spark plasma sintering</topic><topic>SPS</topic><topic>Uranium dioxide</topic><topic>Uranium dioxide (UO2)</topic><topic>Yttrium oxide</topic><topic>Yttrium oxide (Y2O3)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Papynov, E.K.</creatorcontrib><creatorcontrib>Shichalin, O.O.</creatorcontrib><creatorcontrib>Buravlev, I. Yu</creatorcontrib><creatorcontrib>Ivannikov, S.I.</creatorcontrib><creatorcontrib>Zheleznov, V.V.</creatorcontrib><creatorcontrib>Portnyagin, A.S.</creatorcontrib><creatorcontrib>Fedorets, A.N.</creatorcontrib><creatorcontrib>Shlyk, D. Kh</creatorcontrib><creatorcontrib>Sukhorada, A.E.</creatorcontrib><creatorcontrib>Tarabanova, A.E.</creatorcontrib><creatorcontrib>Kosyanov, D. Yu</creatorcontrib><creatorcontrib>Yagofarov, V. Yu</creatorcontrib><creatorcontrib>Tananaev, I.G.</creatorcontrib><creatorcontrib>Sergienko, V.I.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papynov, E.K.</au><au>Shichalin, O.O.</au><au>Buravlev, I. Yu</au><au>Ivannikov, S.I.</au><au>Zheleznov, V.V.</au><au>Portnyagin, A.S.</au><au>Fedorets, A.N.</au><au>Shlyk, D. Kh</au><au>Sukhorada, A.E.</au><au>Tarabanova, A.E.</au><au>Kosyanov, D. Yu</au><au>Yagofarov, V. Yu</au><au>Tananaev, I.G.</au><au>Sergienko, V.I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UO2–Y2O3 ceramic nuclear fuel: SPS fabrication, physico-chemical investigation and neutron absorption evaluation</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2021-10-05</date><risdate>2021</risdate><volume>877</volume><spage>160266</spage><pages>160266-</pages><artnum>160266</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>•Promising UO2-Y2O3 ceramic nuclear fuel pellets are fabricated via SPS technique.•Dynamics of UO2-Y2O3 SPS consolidation is comparatively analyzed with that of UO2-Gd2O3 and UO2-Eu2O3.•(U,Y)O2 solid solution formation by SPS is shown for the first time.•Stable pore formation is identified after addition 2 and 8 wt% of Y2O3.•The neutron absorption lab test is performed for SPS nuclear fuel samples with IFBAs. [Display omitted] The paper studies spark plasma sintering of UO2-based ceramics nuclear fuel obtained from a mixture of pristine urania with 2 and 8 wt% of Y2O3 (integral fuel burnable absorber) produced by liquid-phase ultrasonic homogenizing. Densification dynamics of UO2-Y2O3 system is investigated for the first time in the temperature range up to 1250 °C under spark plasma sintering (SPS) conditions followed by a comparative analysis with UO2-Gd2O3 and UO2-Eu2O3 analogs. Earlier unknown data on formation of (U,Y)O2 solid solutions, isostructural to UO2, under SPS conditions is presented. Structural changes manifested in stable pore and defect occurrence within the ceramics bulk are shown to depend on Y2O3 amount proving the occurrence of the Kirkendall effect, which is commonly known phenomenon in the field of traditional methods of fuel manufacturing. Microhardness (HV), compressive strength (σcs) and density (ρ) are found to degrade in the presence of Y2O3, however their values remain within acceptable limits. For the first time, neutron-activation analysis is implemented as a laboratory means to assess neutron absorption efficiency of the SPS fuels containing various IFBA additives (Gd2O3, Eu2O3, Y2O3). These novel results contribute to the fundamental knowledge on the range of possible applications available owing to nonconventional SPS technology, thus extending the methods palette of fuel fabrication as well as providing new characterization approaches to probe important fuel properties for nuclear power engineering field.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2021.160266</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2021-10, Vol.877, p.160266, Article 160266
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2549056600
source Access via ScienceDirect (Elsevier)
subjects Additives
Ceramic
Ceramic nuclear fuels
Ceramics
Compressive strength
Densification
Europium compounds
Gadolinium oxides
Integral fuel burnable absorbers (IFBA)
Kirkendall effect
Liquid phases
Microhardness
Neutron absorption
Neutron adsorption
Nuclear fuel
Nuclear fuels
Plasma sintering
Sintering (powder metallurgy)
Solid solutions
Spark plasma sintering
SPS
Uranium dioxide
Uranium dioxide (UO2)
Yttrium oxide
Yttrium oxide (Y2O3)
title UO2–Y2O3 ceramic nuclear fuel: SPS fabrication, physico-chemical investigation and neutron absorption evaluation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T18%3A42%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UO2%E2%80%93Y2O3%20ceramic%20nuclear%20fuel:%20SPS%20fabrication,%20physico-chemical%20investigation%20and%20neutron%20absorption%20evaluation&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Papynov,%20E.K.&rft.date=2021-10-05&rft.volume=877&rft.spage=160266&rft.pages=160266-&rft.artnum=160266&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2021.160266&rft_dat=%3Cproquest_cross%3E2549056600%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549056600&rft_id=info:pmid/&rft_els_id=S0925838821016753&rfr_iscdi=true