Solar combined cycle with high-temperature thermochemical energy storage

•The proposed SCC-TCES allows boost the solar share in combined cycles above 70%.•Receiver thermal-to-electric efficiency are in the range 45–50%.•Annual performance is evaluated through four solar radiation clusters from real data.•A 360° heliostats solar field with three cavity receivers (200 m to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy conversion and management 2021-08, Vol.241, p.114274, Article 114274
Hauptverfasser: Ortiz, C., Tejada, C., Chacartegui, R., Bravo, R., Carro, A., Valverde, J.M., Valverde, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 114274
container_title Energy conversion and management
container_volume 241
creator Ortiz, C.
Tejada, C.
Chacartegui, R.
Bravo, R.
Carro, A.
Valverde, J.M.
Valverde, J.
description •The proposed SCC-TCES allows boost the solar share in combined cycles above 70%.•Receiver thermal-to-electric efficiency are in the range 45–50%.•Annual performance is evaluated through four solar radiation clusters from real data.•A 360° heliostats solar field with three cavity receivers (200 m tower) is designed. The present work proposes integrating a high-temperature thermochemical energy storage cycle to boost the solar contribution in solar combined cycles. The main feature of the plant is the possibility of storing solar energy at a very high temperature and releasing it on demand to drive the combined cycle in the absence of solar radiation. Based on the reversible calcination-carbonation of CaCO3/CaO, the Calcium-looping process is proposed since it allows power production above 900 °C by using cheap, non-toxic and widely available raw materials (i.e. limestone or dolomite). Based on an air-open and a CO2-closed combined cycle, two potential configurations are modelled and analysed, including designing a 360° solar field with a 200-meter tower. The novel solar combined cycle analyzed in the present work enhances the annual solar share above 50%, whilst the current state-of-the-art technology is below 15%. From actual solar irradiation data and clustering analysis, results show overall plant efficiencies over 45% (considering off-design performance) with a very high dispatchability, which justifies the interest in further developing this novel cycle.
doi_str_mv 10.1016/j.enconman.2021.114274
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2549052106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890421004507</els_id><sourcerecordid>2549052106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-6002c836bf730c0a8311c1957cd29009a5c71419261c1a7e07ba4a75445383123</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouH78BSl4bp2kabK5KYu6woIH9Ryy6ew2pW3WJKvsv7dL9expYHjed5iHkBsKBQUq7toCB-uH3gwFA0YLSjmT_ITM6FyqnDEmT8kMqBL5XAE_JxcxtgBQViBmZPnmOxMy6_u1G7DO7MF2mH271GSN2zZ5wn6HwaR9wCw1GHpvG-ydNV2GA4btIYvJB7PFK3K2MV3E6995ST6eHt8Xy3z1-vyyeFjltuSQcgHA7LwU640swYKZl5Raqippa6YAlKmspJwqJsa1kQhybbiRFedVObKsvCS3U-8u-M89xqRbvw_DeFKziiuoGAUxUmKibPAxBtzoXXC9CQdNQR-t6Vb_WdNHa3qyNgbvpyCOP3w5DDpaN5JYu4A26dq7_yp-AG9ad88</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549052106</pqid></control><display><type>article</type><title>Solar combined cycle with high-temperature thermochemical energy storage</title><source>Elsevier ScienceDirect Journals</source><creator>Ortiz, C. ; Tejada, C. ; Chacartegui, R. ; Bravo, R. ; Carro, A. ; Valverde, J.M. ; Valverde, J.</creator><creatorcontrib>Ortiz, C. ; Tejada, C. ; Chacartegui, R. ; Bravo, R. ; Carro, A. ; Valverde, J.M. ; Valverde, J.</creatorcontrib><description>•The proposed SCC-TCES allows boost the solar share in combined cycles above 70%.•Receiver thermal-to-electric efficiency are in the range 45–50%.•Annual performance is evaluated through four solar radiation clusters from real data.•A 360° heliostats solar field with three cavity receivers (200 m tower) is designed. The present work proposes integrating a high-temperature thermochemical energy storage cycle to boost the solar contribution in solar combined cycles. The main feature of the plant is the possibility of storing solar energy at a very high temperature and releasing it on demand to drive the combined cycle in the absence of solar radiation. Based on the reversible calcination-carbonation of CaCO3/CaO, the Calcium-looping process is proposed since it allows power production above 900 °C by using cheap, non-toxic and widely available raw materials (i.e. limestone or dolomite). Based on an air-open and a CO2-closed combined cycle, two potential configurations are modelled and analysed, including designing a 360° solar field with a 200-meter tower. The novel solar combined cycle analyzed in the present work enhances the annual solar share above 50%, whilst the current state-of-the-art technology is below 15%. From actual solar irradiation data and clustering analysis, results show overall plant efficiencies over 45% (considering off-design performance) with a very high dispatchability, which justifies the interest in further developing this novel cycle.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2021.114274</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Calcium carbonate ; Calcium-looping ; Carbon dioxide ; Carbonation ; Cluster analysis ; Clustering ; Combined cycle ; CSP ; Dispatchability ; Dolomite ; Energy storage ; High temperature ; Irradiation ; Limestone ; Raw materials ; Solar ; Solar energy ; Solar radiation ; Solar share ; Thermochemical energy storage</subject><ispartof>Energy conversion and management, 2021-08, Vol.241, p.114274, Article 114274</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Aug 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-6002c836bf730c0a8311c1957cd29009a5c71419261c1a7e07ba4a75445383123</citedby><cites>FETCH-LOGICAL-c340t-6002c836bf730c0a8311c1957cd29009a5c71419261c1a7e07ba4a75445383123</cites><orcidid>0000-0003-3874-4913</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0196890421004507$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Ortiz, C.</creatorcontrib><creatorcontrib>Tejada, C.</creatorcontrib><creatorcontrib>Chacartegui, R.</creatorcontrib><creatorcontrib>Bravo, R.</creatorcontrib><creatorcontrib>Carro, A.</creatorcontrib><creatorcontrib>Valverde, J.M.</creatorcontrib><creatorcontrib>Valverde, J.</creatorcontrib><title>Solar combined cycle with high-temperature thermochemical energy storage</title><title>Energy conversion and management</title><description>•The proposed SCC-TCES allows boost the solar share in combined cycles above 70%.•Receiver thermal-to-electric efficiency are in the range 45–50%.•Annual performance is evaluated through four solar radiation clusters from real data.•A 360° heliostats solar field with three cavity receivers (200 m tower) is designed. The present work proposes integrating a high-temperature thermochemical energy storage cycle to boost the solar contribution in solar combined cycles. The main feature of the plant is the possibility of storing solar energy at a very high temperature and releasing it on demand to drive the combined cycle in the absence of solar radiation. Based on the reversible calcination-carbonation of CaCO3/CaO, the Calcium-looping process is proposed since it allows power production above 900 °C by using cheap, non-toxic and widely available raw materials (i.e. limestone or dolomite). Based on an air-open and a CO2-closed combined cycle, two potential configurations are modelled and analysed, including designing a 360° solar field with a 200-meter tower. The novel solar combined cycle analyzed in the present work enhances the annual solar share above 50%, whilst the current state-of-the-art technology is below 15%. From actual solar irradiation data and clustering analysis, results show overall plant efficiencies over 45% (considering off-design performance) with a very high dispatchability, which justifies the interest in further developing this novel cycle.</description><subject>Calcium carbonate</subject><subject>Calcium-looping</subject><subject>Carbon dioxide</subject><subject>Carbonation</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Combined cycle</subject><subject>CSP</subject><subject>Dispatchability</subject><subject>Dolomite</subject><subject>Energy storage</subject><subject>High temperature</subject><subject>Irradiation</subject><subject>Limestone</subject><subject>Raw materials</subject><subject>Solar</subject><subject>Solar energy</subject><subject>Solar radiation</subject><subject>Solar share</subject><subject>Thermochemical energy storage</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouH78BSl4bp2kabK5KYu6woIH9Ryy6ew2pW3WJKvsv7dL9expYHjed5iHkBsKBQUq7toCB-uH3gwFA0YLSjmT_ITM6FyqnDEmT8kMqBL5XAE_JxcxtgBQViBmZPnmOxMy6_u1G7DO7MF2mH271GSN2zZ5wn6HwaR9wCw1GHpvG-ydNV2GA4btIYvJB7PFK3K2MV3E6995ST6eHt8Xy3z1-vyyeFjltuSQcgHA7LwU640swYKZl5Raqippa6YAlKmspJwqJsa1kQhybbiRFedVObKsvCS3U-8u-M89xqRbvw_DeFKziiuoGAUxUmKibPAxBtzoXXC9CQdNQR-t6Vb_WdNHa3qyNgbvpyCOP3w5DDpaN5JYu4A26dq7_yp-AG9ad88</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Ortiz, C.</creator><creator>Tejada, C.</creator><creator>Chacartegui, R.</creator><creator>Bravo, R.</creator><creator>Carro, A.</creator><creator>Valverde, J.M.</creator><creator>Valverde, J.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-3874-4913</orcidid></search><sort><creationdate>20210801</creationdate><title>Solar combined cycle with high-temperature thermochemical energy storage</title><author>Ortiz, C. ; Tejada, C. ; Chacartegui, R. ; Bravo, R. ; Carro, A. ; Valverde, J.M. ; Valverde, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-6002c836bf730c0a8311c1957cd29009a5c71419261c1a7e07ba4a75445383123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Calcium carbonate</topic><topic>Calcium-looping</topic><topic>Carbon dioxide</topic><topic>Carbonation</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Combined cycle</topic><topic>CSP</topic><topic>Dispatchability</topic><topic>Dolomite</topic><topic>Energy storage</topic><topic>High temperature</topic><topic>Irradiation</topic><topic>Limestone</topic><topic>Raw materials</topic><topic>Solar</topic><topic>Solar energy</topic><topic>Solar radiation</topic><topic>Solar share</topic><topic>Thermochemical energy storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ortiz, C.</creatorcontrib><creatorcontrib>Tejada, C.</creatorcontrib><creatorcontrib>Chacartegui, R.</creatorcontrib><creatorcontrib>Bravo, R.</creatorcontrib><creatorcontrib>Carro, A.</creatorcontrib><creatorcontrib>Valverde, J.M.</creatorcontrib><creatorcontrib>Valverde, J.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ortiz, C.</au><au>Tejada, C.</au><au>Chacartegui, R.</au><au>Bravo, R.</au><au>Carro, A.</au><au>Valverde, J.M.</au><au>Valverde, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar combined cycle with high-temperature thermochemical energy storage</atitle><jtitle>Energy conversion and management</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>241</volume><spage>114274</spage><pages>114274-</pages><artnum>114274</artnum><issn>0196-8904</issn><eissn>1879-2227</eissn><abstract>•The proposed SCC-TCES allows boost the solar share in combined cycles above 70%.•Receiver thermal-to-electric efficiency are in the range 45–50%.•Annual performance is evaluated through four solar radiation clusters from real data.•A 360° heliostats solar field with three cavity receivers (200 m tower) is designed. The present work proposes integrating a high-temperature thermochemical energy storage cycle to boost the solar contribution in solar combined cycles. The main feature of the plant is the possibility of storing solar energy at a very high temperature and releasing it on demand to drive the combined cycle in the absence of solar radiation. Based on the reversible calcination-carbonation of CaCO3/CaO, the Calcium-looping process is proposed since it allows power production above 900 °C by using cheap, non-toxic and widely available raw materials (i.e. limestone or dolomite). Based on an air-open and a CO2-closed combined cycle, two potential configurations are modelled and analysed, including designing a 360° solar field with a 200-meter tower. The novel solar combined cycle analyzed in the present work enhances the annual solar share above 50%, whilst the current state-of-the-art technology is below 15%. From actual solar irradiation data and clustering analysis, results show overall plant efficiencies over 45% (considering off-design performance) with a very high dispatchability, which justifies the interest in further developing this novel cycle.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2021.114274</doi><orcidid>https://orcid.org/0000-0003-3874-4913</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0196-8904
ispartof Energy conversion and management, 2021-08, Vol.241, p.114274, Article 114274
issn 0196-8904
1879-2227
language eng
recordid cdi_proquest_journals_2549052106
source Elsevier ScienceDirect Journals
subjects Calcium carbonate
Calcium-looping
Carbon dioxide
Carbonation
Cluster analysis
Clustering
Combined cycle
CSP
Dispatchability
Dolomite
Energy storage
High temperature
Irradiation
Limestone
Raw materials
Solar
Solar energy
Solar radiation
Solar share
Thermochemical energy storage
title Solar combined cycle with high-temperature thermochemical energy storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A44%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar%20combined%20cycle%20with%20high-temperature%20thermochemical%20energy%20storage&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Ortiz,%20C.&rft.date=2021-08-01&rft.volume=241&rft.spage=114274&rft.pages=114274-&rft.artnum=114274&rft.issn=0196-8904&rft.eissn=1879-2227&rft_id=info:doi/10.1016/j.enconman.2021.114274&rft_dat=%3Cproquest_cross%3E2549052106%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549052106&rft_id=info:pmid/&rft_els_id=S0196890421004507&rfr_iscdi=true