Solar combined cycle with high-temperature thermochemical energy storage
•The proposed SCC-TCES allows boost the solar share in combined cycles above 70%.•Receiver thermal-to-electric efficiency are in the range 45–50%.•Annual performance is evaluated through four solar radiation clusters from real data.•A 360° heliostats solar field with three cavity receivers (200 m to...
Gespeichert in:
Veröffentlicht in: | Energy conversion and management 2021-08, Vol.241, p.114274, Article 114274 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 114274 |
container_title | Energy conversion and management |
container_volume | 241 |
creator | Ortiz, C. Tejada, C. Chacartegui, R. Bravo, R. Carro, A. Valverde, J.M. Valverde, J. |
description | •The proposed SCC-TCES allows boost the solar share in combined cycles above 70%.•Receiver thermal-to-electric efficiency are in the range 45–50%.•Annual performance is evaluated through four solar radiation clusters from real data.•A 360° heliostats solar field with three cavity receivers (200 m tower) is designed.
The present work proposes integrating a high-temperature thermochemical energy storage cycle to boost the solar contribution in solar combined cycles. The main feature of the plant is the possibility of storing solar energy at a very high temperature and releasing it on demand to drive the combined cycle in the absence of solar radiation. Based on the reversible calcination-carbonation of CaCO3/CaO, the Calcium-looping process is proposed since it allows power production above 900 °C by using cheap, non-toxic and widely available raw materials (i.e. limestone or dolomite). Based on an air-open and a CO2-closed combined cycle, two potential configurations are modelled and analysed, including designing a 360° solar field with a 200-meter tower. The novel solar combined cycle analyzed in the present work enhances the annual solar share above 50%, whilst the current state-of-the-art technology is below 15%. From actual solar irradiation data and clustering analysis, results show overall plant efficiencies over 45% (considering off-design performance) with a very high dispatchability, which justifies the interest in further developing this novel cycle. |
doi_str_mv | 10.1016/j.enconman.2021.114274 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2549052106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890421004507</els_id><sourcerecordid>2549052106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-6002c836bf730c0a8311c1957cd29009a5c71419261c1a7e07ba4a75445383123</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouH78BSl4bp2kabK5KYu6woIH9Ryy6ew2pW3WJKvsv7dL9expYHjed5iHkBsKBQUq7toCB-uH3gwFA0YLSjmT_ITM6FyqnDEmT8kMqBL5XAE_JxcxtgBQViBmZPnmOxMy6_u1G7DO7MF2mH271GSN2zZ5wn6HwaR9wCw1GHpvG-ydNV2GA4btIYvJB7PFK3K2MV3E6995ST6eHt8Xy3z1-vyyeFjltuSQcgHA7LwU640swYKZl5Raqippa6YAlKmspJwqJsa1kQhybbiRFedVObKsvCS3U-8u-M89xqRbvw_DeFKziiuoGAUxUmKibPAxBtzoXXC9CQdNQR-t6Vb_WdNHa3qyNgbvpyCOP3w5DDpaN5JYu4A26dq7_yp-AG9ad88</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549052106</pqid></control><display><type>article</type><title>Solar combined cycle with high-temperature thermochemical energy storage</title><source>Elsevier ScienceDirect Journals</source><creator>Ortiz, C. ; Tejada, C. ; Chacartegui, R. ; Bravo, R. ; Carro, A. ; Valverde, J.M. ; Valverde, J.</creator><creatorcontrib>Ortiz, C. ; Tejada, C. ; Chacartegui, R. ; Bravo, R. ; Carro, A. ; Valverde, J.M. ; Valverde, J.</creatorcontrib><description>•The proposed SCC-TCES allows boost the solar share in combined cycles above 70%.•Receiver thermal-to-electric efficiency are in the range 45–50%.•Annual performance is evaluated through four solar radiation clusters from real data.•A 360° heliostats solar field with three cavity receivers (200 m tower) is designed.
The present work proposes integrating a high-temperature thermochemical energy storage cycle to boost the solar contribution in solar combined cycles. The main feature of the plant is the possibility of storing solar energy at a very high temperature and releasing it on demand to drive the combined cycle in the absence of solar radiation. Based on the reversible calcination-carbonation of CaCO3/CaO, the Calcium-looping process is proposed since it allows power production above 900 °C by using cheap, non-toxic and widely available raw materials (i.e. limestone or dolomite). Based on an air-open and a CO2-closed combined cycle, two potential configurations are modelled and analysed, including designing a 360° solar field with a 200-meter tower. The novel solar combined cycle analyzed in the present work enhances the annual solar share above 50%, whilst the current state-of-the-art technology is below 15%. From actual solar irradiation data and clustering analysis, results show overall plant efficiencies over 45% (considering off-design performance) with a very high dispatchability, which justifies the interest in further developing this novel cycle.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2021.114274</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Calcium carbonate ; Calcium-looping ; Carbon dioxide ; Carbonation ; Cluster analysis ; Clustering ; Combined cycle ; CSP ; Dispatchability ; Dolomite ; Energy storage ; High temperature ; Irradiation ; Limestone ; Raw materials ; Solar ; Solar energy ; Solar radiation ; Solar share ; Thermochemical energy storage</subject><ispartof>Energy conversion and management, 2021-08, Vol.241, p.114274, Article 114274</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Aug 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-6002c836bf730c0a8311c1957cd29009a5c71419261c1a7e07ba4a75445383123</citedby><cites>FETCH-LOGICAL-c340t-6002c836bf730c0a8311c1957cd29009a5c71419261c1a7e07ba4a75445383123</cites><orcidid>0000-0003-3874-4913</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0196890421004507$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Ortiz, C.</creatorcontrib><creatorcontrib>Tejada, C.</creatorcontrib><creatorcontrib>Chacartegui, R.</creatorcontrib><creatorcontrib>Bravo, R.</creatorcontrib><creatorcontrib>Carro, A.</creatorcontrib><creatorcontrib>Valverde, J.M.</creatorcontrib><creatorcontrib>Valverde, J.</creatorcontrib><title>Solar combined cycle with high-temperature thermochemical energy storage</title><title>Energy conversion and management</title><description>•The proposed SCC-TCES allows boost the solar share in combined cycles above 70%.•Receiver thermal-to-electric efficiency are in the range 45–50%.•Annual performance is evaluated through four solar radiation clusters from real data.•A 360° heliostats solar field with three cavity receivers (200 m tower) is designed.
The present work proposes integrating a high-temperature thermochemical energy storage cycle to boost the solar contribution in solar combined cycles. The main feature of the plant is the possibility of storing solar energy at a very high temperature and releasing it on demand to drive the combined cycle in the absence of solar radiation. Based on the reversible calcination-carbonation of CaCO3/CaO, the Calcium-looping process is proposed since it allows power production above 900 °C by using cheap, non-toxic and widely available raw materials (i.e. limestone or dolomite). Based on an air-open and a CO2-closed combined cycle, two potential configurations are modelled and analysed, including designing a 360° solar field with a 200-meter tower. The novel solar combined cycle analyzed in the present work enhances the annual solar share above 50%, whilst the current state-of-the-art technology is below 15%. From actual solar irradiation data and clustering analysis, results show overall plant efficiencies over 45% (considering off-design performance) with a very high dispatchability, which justifies the interest in further developing this novel cycle.</description><subject>Calcium carbonate</subject><subject>Calcium-looping</subject><subject>Carbon dioxide</subject><subject>Carbonation</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Combined cycle</subject><subject>CSP</subject><subject>Dispatchability</subject><subject>Dolomite</subject><subject>Energy storage</subject><subject>High temperature</subject><subject>Irradiation</subject><subject>Limestone</subject><subject>Raw materials</subject><subject>Solar</subject><subject>Solar energy</subject><subject>Solar radiation</subject><subject>Solar share</subject><subject>Thermochemical energy storage</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouH78BSl4bp2kabK5KYu6woIH9Ryy6ew2pW3WJKvsv7dL9expYHjed5iHkBsKBQUq7toCB-uH3gwFA0YLSjmT_ITM6FyqnDEmT8kMqBL5XAE_JxcxtgBQViBmZPnmOxMy6_u1G7DO7MF2mH271GSN2zZ5wn6HwaR9wCw1GHpvG-ydNV2GA4btIYvJB7PFK3K2MV3E6995ST6eHt8Xy3z1-vyyeFjltuSQcgHA7LwU640swYKZl5Raqippa6YAlKmspJwqJsa1kQhybbiRFedVObKsvCS3U-8u-M89xqRbvw_DeFKziiuoGAUxUmKibPAxBtzoXXC9CQdNQR-t6Vb_WdNHa3qyNgbvpyCOP3w5DDpaN5JYu4A26dq7_yp-AG9ad88</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Ortiz, C.</creator><creator>Tejada, C.</creator><creator>Chacartegui, R.</creator><creator>Bravo, R.</creator><creator>Carro, A.</creator><creator>Valverde, J.M.</creator><creator>Valverde, J.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-3874-4913</orcidid></search><sort><creationdate>20210801</creationdate><title>Solar combined cycle with high-temperature thermochemical energy storage</title><author>Ortiz, C. ; Tejada, C. ; Chacartegui, R. ; Bravo, R. ; Carro, A. ; Valverde, J.M. ; Valverde, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-6002c836bf730c0a8311c1957cd29009a5c71419261c1a7e07ba4a75445383123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Calcium carbonate</topic><topic>Calcium-looping</topic><topic>Carbon dioxide</topic><topic>Carbonation</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Combined cycle</topic><topic>CSP</topic><topic>Dispatchability</topic><topic>Dolomite</topic><topic>Energy storage</topic><topic>High temperature</topic><topic>Irradiation</topic><topic>Limestone</topic><topic>Raw materials</topic><topic>Solar</topic><topic>Solar energy</topic><topic>Solar radiation</topic><topic>Solar share</topic><topic>Thermochemical energy storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ortiz, C.</creatorcontrib><creatorcontrib>Tejada, C.</creatorcontrib><creatorcontrib>Chacartegui, R.</creatorcontrib><creatorcontrib>Bravo, R.</creatorcontrib><creatorcontrib>Carro, A.</creatorcontrib><creatorcontrib>Valverde, J.M.</creatorcontrib><creatorcontrib>Valverde, J.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ortiz, C.</au><au>Tejada, C.</au><au>Chacartegui, R.</au><au>Bravo, R.</au><au>Carro, A.</au><au>Valverde, J.M.</au><au>Valverde, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar combined cycle with high-temperature thermochemical energy storage</atitle><jtitle>Energy conversion and management</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>241</volume><spage>114274</spage><pages>114274-</pages><artnum>114274</artnum><issn>0196-8904</issn><eissn>1879-2227</eissn><abstract>•The proposed SCC-TCES allows boost the solar share in combined cycles above 70%.•Receiver thermal-to-electric efficiency are in the range 45–50%.•Annual performance is evaluated through four solar radiation clusters from real data.•A 360° heliostats solar field with three cavity receivers (200 m tower) is designed.
The present work proposes integrating a high-temperature thermochemical energy storage cycle to boost the solar contribution in solar combined cycles. The main feature of the plant is the possibility of storing solar energy at a very high temperature and releasing it on demand to drive the combined cycle in the absence of solar radiation. Based on the reversible calcination-carbonation of CaCO3/CaO, the Calcium-looping process is proposed since it allows power production above 900 °C by using cheap, non-toxic and widely available raw materials (i.e. limestone or dolomite). Based on an air-open and a CO2-closed combined cycle, two potential configurations are modelled and analysed, including designing a 360° solar field with a 200-meter tower. The novel solar combined cycle analyzed in the present work enhances the annual solar share above 50%, whilst the current state-of-the-art technology is below 15%. From actual solar irradiation data and clustering analysis, results show overall plant efficiencies over 45% (considering off-design performance) with a very high dispatchability, which justifies the interest in further developing this novel cycle.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2021.114274</doi><orcidid>https://orcid.org/0000-0003-3874-4913</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-8904 |
ispartof | Energy conversion and management, 2021-08, Vol.241, p.114274, Article 114274 |
issn | 0196-8904 1879-2227 |
language | eng |
recordid | cdi_proquest_journals_2549052106 |
source | Elsevier ScienceDirect Journals |
subjects | Calcium carbonate Calcium-looping Carbon dioxide Carbonation Cluster analysis Clustering Combined cycle CSP Dispatchability Dolomite Energy storage High temperature Irradiation Limestone Raw materials Solar Solar energy Solar radiation Solar share Thermochemical energy storage |
title | Solar combined cycle with high-temperature thermochemical energy storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A44%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar%20combined%20cycle%20with%20high-temperature%20thermochemical%20energy%20storage&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Ortiz,%20C.&rft.date=2021-08-01&rft.volume=241&rft.spage=114274&rft.pages=114274-&rft.artnum=114274&rft.issn=0196-8904&rft.eissn=1879-2227&rft_id=info:doi/10.1016/j.enconman.2021.114274&rft_dat=%3Cproquest_cross%3E2549052106%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549052106&rft_id=info:pmid/&rft_els_id=S0196890421004507&rfr_iscdi=true |