Generalized Inverses Estimations by Means of Iterative Methods with Memory

A secant-type method is designed for approximating the inverse and some generalized inverses of a complex matrix A. For a nonsingular matrix, the proposed method gives us an approximation of the inverse and, when the matrix is singular, an approximation of the Moore–Penrose inverse and Drazin invers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2020-01, Vol.8 (1), p.2
Hauptverfasser: Artidiello, Santiago, Cordero, Alicia, Torregrosa, Juan R., P. Vassileva, María
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 2
container_title Mathematics (Basel)
container_volume 8
creator Artidiello, Santiago
Cordero, Alicia
Torregrosa, Juan R.
P. Vassileva, María
description A secant-type method is designed for approximating the inverse and some generalized inverses of a complex matrix A. For a nonsingular matrix, the proposed method gives us an approximation of the inverse and, when the matrix is singular, an approximation of the Moore–Penrose inverse and Drazin inverse are obtained. The convergence and the order of convergence is presented in each case. Some numerical tests allowed us to confirm the theoretical results and to compare the performance of our method with other known ones. With these results, the iterative methods with memory appear for the first time for estimating the solution of a nonlinear matrix equations.
doi_str_mv 10.3390/math8010002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548967095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548967095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-bc8ad0be891410a591abaa60c4d5e5ec80e38bb4fe0b861f38768e7dbbc3c7db3</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWGpPfoGAR1mdJPsnOUqptVLxouclyc6yW9pNTdLK-umN1ENP783jxxtmCLll8CCEgsedjp0EBgD8gkw451VWpfzyzF-TWQibRIBiQuZqQl6XOKDX2_4HG7oajugDBroIsU91vRsCNSN9Q52Ma-kqJjb2R0xR7FwT6HcfuzTsnB9vyFWrtwFn_zoln8-Lj_lLtn5fruZP68xyJWNmrNQNGJSK5Qx0oZg2Wpdg86bAAq0EFNKYvEUwsmStkFUpsWqMscImEVNyd-rde_d1wBDrjTv4Ia2seZFLVVagikTdnyjrXQge23rv001-rBnUf_-qz_4lfgHyfV6q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548967095</pqid></control><display><type>article</type><title>Generalized Inverses Estimations by Means of Iterative Methods with Memory</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Artidiello, Santiago ; Cordero, Alicia ; Torregrosa, Juan R. ; P. Vassileva, María</creator><creatorcontrib>Artidiello, Santiago ; Cordero, Alicia ; Torregrosa, Juan R. ; P. Vassileva, María</creatorcontrib><description>A secant-type method is designed for approximating the inverse and some generalized inverses of a complex matrix A. For a nonsingular matrix, the proposed method gives us an approximation of the inverse and, when the matrix is singular, an approximation of the Moore–Penrose inverse and Drazin inverse are obtained. The convergence and the order of convergence is presented in each case. Some numerical tests allowed us to confirm the theoretical results and to compare the performance of our method with other known ones. With these results, the iterative methods with memory appear for the first time for estimating the solution of a nonlinear matrix equations.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math8010002</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Approximation ; Convergence ; Food science ; Iterative methods ; Mathematical analysis ; Methods ; Partial differential equations</subject><ispartof>Mathematics (Basel), 2020-01, Vol.8 (1), p.2</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-bc8ad0be891410a591abaa60c4d5e5ec80e38bb4fe0b861f38768e7dbbc3c7db3</citedby><cites>FETCH-LOGICAL-c298t-bc8ad0be891410a591abaa60c4d5e5ec80e38bb4fe0b861f38768e7dbbc3c7db3</cites><orcidid>0000-0003-4208-1083 ; 0000-0002-7462-9173 ; 0000-0002-9893-0761 ; 0000-0001-7755-5635</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Artidiello, Santiago</creatorcontrib><creatorcontrib>Cordero, Alicia</creatorcontrib><creatorcontrib>Torregrosa, Juan R.</creatorcontrib><creatorcontrib>P. Vassileva, María</creatorcontrib><title>Generalized Inverses Estimations by Means of Iterative Methods with Memory</title><title>Mathematics (Basel)</title><description>A secant-type method is designed for approximating the inverse and some generalized inverses of a complex matrix A. For a nonsingular matrix, the proposed method gives us an approximation of the inverse and, when the matrix is singular, an approximation of the Moore–Penrose inverse and Drazin inverse are obtained. The convergence and the order of convergence is presented in each case. Some numerical tests allowed us to confirm the theoretical results and to compare the performance of our method with other known ones. With these results, the iterative methods with memory appear for the first time for estimating the solution of a nonlinear matrix equations.</description><subject>Approximation</subject><subject>Convergence</subject><subject>Food science</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Partial differential equations</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkE9LAzEQxYMoWGpPfoGAR1mdJPsnOUqptVLxouclyc6yW9pNTdLK-umN1ENP783jxxtmCLll8CCEgsedjp0EBgD8gkw451VWpfzyzF-TWQibRIBiQuZqQl6XOKDX2_4HG7oajugDBroIsU91vRsCNSN9Q52Ma-kqJjb2R0xR7FwT6HcfuzTsnB9vyFWrtwFn_zoln8-Lj_lLtn5fruZP68xyJWNmrNQNGJSK5Qx0oZg2Wpdg86bAAq0EFNKYvEUwsmStkFUpsWqMscImEVNyd-rde_d1wBDrjTv4Ia2seZFLVVagikTdnyjrXQge23rv001-rBnUf_-qz_4lfgHyfV6q</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Artidiello, Santiago</creator><creator>Cordero, Alicia</creator><creator>Torregrosa, Juan R.</creator><creator>P. Vassileva, María</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4208-1083</orcidid><orcidid>https://orcid.org/0000-0002-7462-9173</orcidid><orcidid>https://orcid.org/0000-0002-9893-0761</orcidid><orcidid>https://orcid.org/0000-0001-7755-5635</orcidid></search><sort><creationdate>20200101</creationdate><title>Generalized Inverses Estimations by Means of Iterative Methods with Memory</title><author>Artidiello, Santiago ; Cordero, Alicia ; Torregrosa, Juan R. ; P. Vassileva, María</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-bc8ad0be891410a591abaa60c4d5e5ec80e38bb4fe0b861f38768e7dbbc3c7db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Approximation</topic><topic>Convergence</topic><topic>Food science</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Artidiello, Santiago</creatorcontrib><creatorcontrib>Cordero, Alicia</creatorcontrib><creatorcontrib>Torregrosa, Juan R.</creatorcontrib><creatorcontrib>P. Vassileva, María</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Artidiello, Santiago</au><au>Cordero, Alicia</au><au>Torregrosa, Juan R.</au><au>P. Vassileva, María</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Inverses Estimations by Means of Iterative Methods with Memory</atitle><jtitle>Mathematics (Basel)</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><issue>1</issue><spage>2</spage><pages>2-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>A secant-type method is designed for approximating the inverse and some generalized inverses of a complex matrix A. For a nonsingular matrix, the proposed method gives us an approximation of the inverse and, when the matrix is singular, an approximation of the Moore–Penrose inverse and Drazin inverse are obtained. The convergence and the order of convergence is presented in each case. Some numerical tests allowed us to confirm the theoretical results and to compare the performance of our method with other known ones. With these results, the iterative methods with memory appear for the first time for estimating the solution of a nonlinear matrix equations.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math8010002</doi><orcidid>https://orcid.org/0000-0003-4208-1083</orcidid><orcidid>https://orcid.org/0000-0002-7462-9173</orcidid><orcidid>https://orcid.org/0000-0002-9893-0761</orcidid><orcidid>https://orcid.org/0000-0001-7755-5635</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-7390
ispartof Mathematics (Basel), 2020-01, Vol.8 (1), p.2
issn 2227-7390
2227-7390
language eng
recordid cdi_proquest_journals_2548967095
source MDPI - Multidisciplinary Digital Publishing Institute; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Approximation
Convergence
Food science
Iterative methods
Mathematical analysis
Methods
Partial differential equations
title Generalized Inverses Estimations by Means of Iterative Methods with Memory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A14%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Inverses%20Estimations%20by%20Means%20of%20Iterative%20Methods%20with%20Memory&rft.jtitle=Mathematics%20(Basel)&rft.au=Artidiello,%20Santiago&rft.date=2020-01-01&rft.volume=8&rft.issue=1&rft.spage=2&rft.pages=2-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math8010002&rft_dat=%3Cproquest_cross%3E2548967095%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548967095&rft_id=info:pmid/&rfr_iscdi=true