Multipolar Fuzzy p-Ideals of BCI-Algebras

The notion of (normal) m-polar ( ∈ , ∈ ) -fuzzy p-ideals of BCI-algebras is introduced, and several properties are investigated. Relations between an m-polar ( ∈ , ∈ ) -fuzzy ideal and an m-polar ( ∈ , ∈ ) -fuzzy p-ideal are displayed, and conditions for an m-polar ( ∈ , ∈ ) -fuzzy ideal to be an m-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2019-11, Vol.7 (11), p.1094
Hauptverfasser: Takallo, Mohammad Mohseni, Ahn, Sun Shin, Borzooei, Rajab Ali, Jun, Young Bae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 1094
container_title Mathematics (Basel)
container_volume 7
creator Takallo, Mohammad Mohseni
Ahn, Sun Shin
Borzooei, Rajab Ali
Jun, Young Bae
description The notion of (normal) m-polar ( ∈ , ∈ ) -fuzzy p-ideals of BCI-algebras is introduced, and several properties are investigated. Relations between an m-polar ( ∈ , ∈ ) -fuzzy ideal and an m-polar ( ∈ , ∈ ) -fuzzy p-ideal are displayed, and conditions for an m-polar ( ∈ , ∈ ) -fuzzy ideal to be an m-polar ( ∈ , ∈ ) -fuzzy p-ideal are provided. Characterization of m-polar ( ∈ , ∈ ) -fuzzy p-ideals are considered. Given an m-polar ( ∈ , ∈ ) -fuzzy ideal (resp., m-polar ( ∈ , ∈ ) -fuzzy p-ideal), a normal m-polar ( ∈ , ∈ ) -fuzzy ideal (resp., normal m-polar ( ∈ , ∈ ) -fuzzy p-ideal) is established. Using an m-polar ( ∈ , ∈ ) -fuzzy ideal, the quotient structure of BCI-algebras is constructed.
doi_str_mv 10.3390/math7111094
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548931901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548931901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-c9714a5c8ed7a415e2bc2208d3466419baaea1d3d0c83e62b1708619c21ecc103</originalsourceid><addsrcrecordid>eNpNUMFKAzEUDKJgqT35AwueRKJ5SXaTHOtidaHiRc8hm2S1ZWvWZPfQfr2ReuhcZhiGGRiEroHcM6bIw86MXwIAiOJnaEYpFVhk__xEX6JFSluSoYBJrmbo9nXqx80QehOL1XQ47IsBN86bPhWhKx7rBi_7T99Gk67QRZdtv_jnOfpYPb3XL3j99tzUyzW2VMkRWyWAm9JK74ThUHraWkqJdIxXFQfVGuMNOOaIlcxXtAVBZAXKUvDWAmFzdHPsHWL4mXwa9TZM8TtPalpyqRgoAjl1d0zZGFKKvtND3OxM3Gsg-u8OfXIH-wVHdVAf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548931901</pqid></control><display><type>article</type><title>Multipolar Fuzzy p-Ideals of BCI-Algebras</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Takallo, Mohammad Mohseni ; Ahn, Sun Shin ; Borzooei, Rajab Ali ; Jun, Young Bae</creator><creatorcontrib>Takallo, Mohammad Mohseni ; Ahn, Sun Shin ; Borzooei, Rajab Ali ; Jun, Young Bae</creatorcontrib><description>The notion of (normal) m-polar ( ∈ , ∈ ) -fuzzy p-ideals of BCI-algebras is introduced, and several properties are investigated. Relations between an m-polar ( ∈ , ∈ ) -fuzzy ideal and an m-polar ( ∈ , ∈ ) -fuzzy p-ideal are displayed, and conditions for an m-polar ( ∈ , ∈ ) -fuzzy ideal to be an m-polar ( ∈ , ∈ ) -fuzzy p-ideal are provided. Characterization of m-polar ( ∈ , ∈ ) -fuzzy p-ideals are considered. Given an m-polar ( ∈ , ∈ ) -fuzzy ideal (resp., m-polar ( ∈ , ∈ ) -fuzzy p-ideal), a normal m-polar ( ∈ , ∈ ) -fuzzy ideal (resp., normal m-polar ( ∈ , ∈ ) -fuzzy p-ideal) is established. Using an m-polar ( ∈ , ∈ ) -fuzzy ideal, the quotient structure of BCI-algebras is constructed.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math7111094</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algebra ; Food science ; Fuzzy sets ; Quotients ; Set theory</subject><ispartof>Mathematics (Basel), 2019-11, Vol.7 (11), p.1094</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-c9714a5c8ed7a415e2bc2208d3466419baaea1d3d0c83e62b1708619c21ecc103</citedby><cites>FETCH-LOGICAL-c298t-c9714a5c8ed7a415e2bc2208d3466419baaea1d3d0c83e62b1708619c21ecc103</cites><orcidid>0000-0002-4113-3657 ; 0000-0001-7538-7885</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Takallo, Mohammad Mohseni</creatorcontrib><creatorcontrib>Ahn, Sun Shin</creatorcontrib><creatorcontrib>Borzooei, Rajab Ali</creatorcontrib><creatorcontrib>Jun, Young Bae</creatorcontrib><title>Multipolar Fuzzy p-Ideals of BCI-Algebras</title><title>Mathematics (Basel)</title><description>The notion of (normal) m-polar ( ∈ , ∈ ) -fuzzy p-ideals of BCI-algebras is introduced, and several properties are investigated. Relations between an m-polar ( ∈ , ∈ ) -fuzzy ideal and an m-polar ( ∈ , ∈ ) -fuzzy p-ideal are displayed, and conditions for an m-polar ( ∈ , ∈ ) -fuzzy ideal to be an m-polar ( ∈ , ∈ ) -fuzzy p-ideal are provided. Characterization of m-polar ( ∈ , ∈ ) -fuzzy p-ideals are considered. Given an m-polar ( ∈ , ∈ ) -fuzzy ideal (resp., m-polar ( ∈ , ∈ ) -fuzzy p-ideal), a normal m-polar ( ∈ , ∈ ) -fuzzy ideal (resp., normal m-polar ( ∈ , ∈ ) -fuzzy p-ideal) is established. Using an m-polar ( ∈ , ∈ ) -fuzzy ideal, the quotient structure of BCI-algebras is constructed.</description><subject>Algebra</subject><subject>Food science</subject><subject>Fuzzy sets</subject><subject>Quotients</subject><subject>Set theory</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNUMFKAzEUDKJgqT35AwueRKJ5SXaTHOtidaHiRc8hm2S1ZWvWZPfQfr2ReuhcZhiGGRiEroHcM6bIw86MXwIAiOJnaEYpFVhk__xEX6JFSluSoYBJrmbo9nXqx80QehOL1XQ47IsBN86bPhWhKx7rBi_7T99Gk67QRZdtv_jnOfpYPb3XL3j99tzUyzW2VMkRWyWAm9JK74ThUHraWkqJdIxXFQfVGuMNOOaIlcxXtAVBZAXKUvDWAmFzdHPsHWL4mXwa9TZM8TtPalpyqRgoAjl1d0zZGFKKvtND3OxM3Gsg-u8OfXIH-wVHdVAf</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Takallo, Mohammad Mohseni</creator><creator>Ahn, Sun Shin</creator><creator>Borzooei, Rajab Ali</creator><creator>Jun, Young Bae</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-4113-3657</orcidid><orcidid>https://orcid.org/0000-0001-7538-7885</orcidid></search><sort><creationdate>20191101</creationdate><title>Multipolar Fuzzy p-Ideals of BCI-Algebras</title><author>Takallo, Mohammad Mohseni ; Ahn, Sun Shin ; Borzooei, Rajab Ali ; Jun, Young Bae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-c9714a5c8ed7a415e2bc2208d3466419baaea1d3d0c83e62b1708619c21ecc103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Food science</topic><topic>Fuzzy sets</topic><topic>Quotients</topic><topic>Set theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takallo, Mohammad Mohseni</creatorcontrib><creatorcontrib>Ahn, Sun Shin</creatorcontrib><creatorcontrib>Borzooei, Rajab Ali</creatorcontrib><creatorcontrib>Jun, Young Bae</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takallo, Mohammad Mohseni</au><au>Ahn, Sun Shin</au><au>Borzooei, Rajab Ali</au><au>Jun, Young Bae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multipolar Fuzzy p-Ideals of BCI-Algebras</atitle><jtitle>Mathematics (Basel)</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>7</volume><issue>11</issue><spage>1094</spage><pages>1094-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>The notion of (normal) m-polar ( ∈ , ∈ ) -fuzzy p-ideals of BCI-algebras is introduced, and several properties are investigated. Relations between an m-polar ( ∈ , ∈ ) -fuzzy ideal and an m-polar ( ∈ , ∈ ) -fuzzy p-ideal are displayed, and conditions for an m-polar ( ∈ , ∈ ) -fuzzy ideal to be an m-polar ( ∈ , ∈ ) -fuzzy p-ideal are provided. Characterization of m-polar ( ∈ , ∈ ) -fuzzy p-ideals are considered. Given an m-polar ( ∈ , ∈ ) -fuzzy ideal (resp., m-polar ( ∈ , ∈ ) -fuzzy p-ideal), a normal m-polar ( ∈ , ∈ ) -fuzzy ideal (resp., normal m-polar ( ∈ , ∈ ) -fuzzy p-ideal) is established. Using an m-polar ( ∈ , ∈ ) -fuzzy ideal, the quotient structure of BCI-algebras is constructed.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math7111094</doi><orcidid>https://orcid.org/0000-0002-4113-3657</orcidid><orcidid>https://orcid.org/0000-0001-7538-7885</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-7390
ispartof Mathematics (Basel), 2019-11, Vol.7 (11), p.1094
issn 2227-7390
2227-7390
language eng
recordid cdi_proquest_journals_2548931901
source MDPI - Multidisciplinary Digital Publishing Institute; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algebra
Food science
Fuzzy sets
Quotients
Set theory
title Multipolar Fuzzy p-Ideals of BCI-Algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A22%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multipolar%20Fuzzy%20p-Ideals%20of%20BCI-Algebras&rft.jtitle=Mathematics%20(Basel)&rft.au=Takallo,%20Mohammad%20Mohseni&rft.date=2019-11-01&rft.volume=7&rft.issue=11&rft.spage=1094&rft.pages=1094-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math7111094&rft_dat=%3Cproquest_cross%3E2548931901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548931901&rft_id=info:pmid/&rfr_iscdi=true