Structural equation modeling with time dependence: an application comparing Brazilian energy distributors

This study proposes a Bayesian structural equation model (SEM) to explore financial and economic sustainability indicators, considered by the Brazilian energy regulator (ANEEL), to evaluate the performance of energy distribution companies. The methodology applies confirmatory factor analysis for dim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in statistical analysis : AStA : a journal of the German Statistical Society 2021-06, Vol.105 (2), p.353-383
Hauptverfasser: Mayrink, Vinícius Diniz, Panaro, Renato Valladares, Costa, Marcelo Azevedo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 383
container_issue 2
container_start_page 353
container_title Advances in statistical analysis : AStA : a journal of the German Statistical Society
container_volume 105
creator Mayrink, Vinícius Diniz
Panaro, Renato Valladares
Costa, Marcelo Azevedo
description This study proposes a Bayesian structural equation model (SEM) to explore financial and economic sustainability indicators, considered by the Brazilian energy regulator (ANEEL), to evaluate the performance of energy distribution companies. The methodology applies confirmatory factor analysis for dimension reduction of the original multivariate data set into few representative latent variables (factors). In addition, a regression structure is defined to establish the impact of the factors over the response “indebtedness” of the companies; this is a central aspect regularly discussed within ANEEL to identify whether a distributor may have difficulty to manage the concession. Most of the variables in this study are collected for 8 different years (2011–2018); therefore, a time dependence is inserted in the analysis to correlate observations. The SEM approach has several advantages in this context: it avoids using criticized deterministic formulations to measure non-observable aspects of the distributors, it allows a broad statistical analysis exploring elements that cannot be investigated through the simple descriptive studies currently developed by the regulator, and finally, it provides tools to properly rank and compare distances between companies. The Bayesian view is a powerful option to handle the SEM fit here, since convergence issues, due to sample size and high dimensionality, may be experienced via classical alternatives based on maximization.
doi_str_mv 10.1007/s10182-020-00377-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548929970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548929970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-33b8c7177bafae1f547b9f4109d9cfb4f77cfb24dbc15b6e3a381786ba1cdea03</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcB19U82qZ1p-ILBlyo4C4k6c2Yoa9JUmT89bZWdOfqXrjnnMv5EDql5JwSIi4CJbRgCWEkIYQLkbA9tKBFzpOCFm_7v7ugh-gohA0hOU0ZXSD3HP1g4uBVjWE7qOi6FjddBbVr1_jDxXccXQO4gh7aCloDl1i1WPV97cysNl3TKz_Jr736dLUb79CCX-9w5UL0Tg-x8-EYHVhVBzj5mUv0enf7cvOQrJ7uH2-uVonhGYsJ57owggqhlVVAbZYKXdqUkrIqjdWpFWIcLK20oZnOgSs-1ipyraipQBG-RGdzbu-77QAhyk03-HZ8KVmWFiUrSzGp2KwyvgvBg5W9d43yO0mJnJDKGakckcpvpJKNJj6bQj_1Bf8X_Y_rCxlcfKk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548929970</pqid></control><display><type>article</type><title>Structural equation modeling with time dependence: an application comparing Brazilian energy distributors</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mayrink, Vinícius Diniz ; Panaro, Renato Valladares ; Costa, Marcelo Azevedo</creator><creatorcontrib>Mayrink, Vinícius Diniz ; Panaro, Renato Valladares ; Costa, Marcelo Azevedo</creatorcontrib><description>This study proposes a Bayesian structural equation model (SEM) to explore financial and economic sustainability indicators, considered by the Brazilian energy regulator (ANEEL), to evaluate the performance of energy distribution companies. The methodology applies confirmatory factor analysis for dimension reduction of the original multivariate data set into few representative latent variables (factors). In addition, a regression structure is defined to establish the impact of the factors over the response “indebtedness” of the companies; this is a central aspect regularly discussed within ANEEL to identify whether a distributor may have difficulty to manage the concession. Most of the variables in this study are collected for 8 different years (2011–2018); therefore, a time dependence is inserted in the analysis to correlate observations. The SEM approach has several advantages in this context: it avoids using criticized deterministic formulations to measure non-observable aspects of the distributors, it allows a broad statistical analysis exploring elements that cannot be investigated through the simple descriptive studies currently developed by the regulator, and finally, it provides tools to properly rank and compare distances between companies. The Bayesian view is a powerful option to handle the SEM fit here, since convergence issues, due to sample size and high dimensionality, may be experienced via classical alternatives based on maximization.</description><identifier>ISSN: 1863-8171</identifier><identifier>EISSN: 1863-818X</identifier><identifier>DOI: 10.1007/s10182-020-00377-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bayesian analysis ; Distributors ; Econometrics ; Economic models ; Economics ; Energy distribution ; Factor analysis ; Finance ; Insurance ; Management ; Mathematical models ; Mathematics and Statistics ; Multivariate analysis ; Multivariate statistical analysis ; Original Paper ; Probability Theory and Stochastic Processes ; Statistical analysis ; Statistics ; Statistics for Business ; Structural equation modeling ; Time dependence</subject><ispartof>Advances in statistical analysis : AStA : a journal of the German Statistical Society, 2021-06, Vol.105 (2), p.353-383</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-33b8c7177bafae1f547b9f4109d9cfb4f77cfb24dbc15b6e3a381786ba1cdea03</citedby><cites>FETCH-LOGICAL-c352t-33b8c7177bafae1f547b9f4109d9cfb4f77cfb24dbc15b6e3a381786ba1cdea03</cites><orcidid>0000-0002-5683-8326</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10182-020-00377-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10182-020-00377-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Mayrink, Vinícius Diniz</creatorcontrib><creatorcontrib>Panaro, Renato Valladares</creatorcontrib><creatorcontrib>Costa, Marcelo Azevedo</creatorcontrib><title>Structural equation modeling with time dependence: an application comparing Brazilian energy distributors</title><title>Advances in statistical analysis : AStA : a journal of the German Statistical Society</title><addtitle>AStA Adv Stat Anal</addtitle><description>This study proposes a Bayesian structural equation model (SEM) to explore financial and economic sustainability indicators, considered by the Brazilian energy regulator (ANEEL), to evaluate the performance of energy distribution companies. The methodology applies confirmatory factor analysis for dimension reduction of the original multivariate data set into few representative latent variables (factors). In addition, a regression structure is defined to establish the impact of the factors over the response “indebtedness” of the companies; this is a central aspect regularly discussed within ANEEL to identify whether a distributor may have difficulty to manage the concession. Most of the variables in this study are collected for 8 different years (2011–2018); therefore, a time dependence is inserted in the analysis to correlate observations. The SEM approach has several advantages in this context: it avoids using criticized deterministic formulations to measure non-observable aspects of the distributors, it allows a broad statistical analysis exploring elements that cannot be investigated through the simple descriptive studies currently developed by the regulator, and finally, it provides tools to properly rank and compare distances between companies. The Bayesian view is a powerful option to handle the SEM fit here, since convergence issues, due to sample size and high dimensionality, may be experienced via classical alternatives based on maximization.</description><subject>Bayesian analysis</subject><subject>Distributors</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>Economics</subject><subject>Energy distribution</subject><subject>Factor analysis</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematical models</subject><subject>Mathematics and Statistics</subject><subject>Multivariate analysis</subject><subject>Multivariate statistical analysis</subject><subject>Original Paper</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Structural equation modeling</subject><subject>Time dependence</subject><issn>1863-8171</issn><issn>1863-818X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcB19U82qZ1p-ILBlyo4C4k6c2Yoa9JUmT89bZWdOfqXrjnnMv5EDql5JwSIi4CJbRgCWEkIYQLkbA9tKBFzpOCFm_7v7ugh-gohA0hOU0ZXSD3HP1g4uBVjWE7qOi6FjddBbVr1_jDxXccXQO4gh7aCloDl1i1WPV97cysNl3TKz_Jr736dLUb79CCX-9w5UL0Tg-x8-EYHVhVBzj5mUv0enf7cvOQrJ7uH2-uVonhGYsJ57owggqhlVVAbZYKXdqUkrIqjdWpFWIcLK20oZnOgSs-1ipyraipQBG-RGdzbu-77QAhyk03-HZ8KVmWFiUrSzGp2KwyvgvBg5W9d43yO0mJnJDKGakckcpvpJKNJj6bQj_1Bf8X_Y_rCxlcfKk</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Mayrink, Vinícius Diniz</creator><creator>Panaro, Renato Valladares</creator><creator>Costa, Marcelo Azevedo</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5683-8326</orcidid></search><sort><creationdate>20210601</creationdate><title>Structural equation modeling with time dependence: an application comparing Brazilian energy distributors</title><author>Mayrink, Vinícius Diniz ; Panaro, Renato Valladares ; Costa, Marcelo Azevedo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-33b8c7177bafae1f547b9f4109d9cfb4f77cfb24dbc15b6e3a381786ba1cdea03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayesian analysis</topic><topic>Distributors</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>Economics</topic><topic>Energy distribution</topic><topic>Factor analysis</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematical models</topic><topic>Mathematics and Statistics</topic><topic>Multivariate analysis</topic><topic>Multivariate statistical analysis</topic><topic>Original Paper</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Structural equation modeling</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mayrink, Vinícius Diniz</creatorcontrib><creatorcontrib>Panaro, Renato Valladares</creatorcontrib><creatorcontrib>Costa, Marcelo Azevedo</creatorcontrib><collection>CrossRef</collection><jtitle>Advances in statistical analysis : AStA : a journal of the German Statistical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mayrink, Vinícius Diniz</au><au>Panaro, Renato Valladares</au><au>Costa, Marcelo Azevedo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural equation modeling with time dependence: an application comparing Brazilian energy distributors</atitle><jtitle>Advances in statistical analysis : AStA : a journal of the German Statistical Society</jtitle><stitle>AStA Adv Stat Anal</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>105</volume><issue>2</issue><spage>353</spage><epage>383</epage><pages>353-383</pages><issn>1863-8171</issn><eissn>1863-818X</eissn><abstract>This study proposes a Bayesian structural equation model (SEM) to explore financial and economic sustainability indicators, considered by the Brazilian energy regulator (ANEEL), to evaluate the performance of energy distribution companies. The methodology applies confirmatory factor analysis for dimension reduction of the original multivariate data set into few representative latent variables (factors). In addition, a regression structure is defined to establish the impact of the factors over the response “indebtedness” of the companies; this is a central aspect regularly discussed within ANEEL to identify whether a distributor may have difficulty to manage the concession. Most of the variables in this study are collected for 8 different years (2011–2018); therefore, a time dependence is inserted in the analysis to correlate observations. The SEM approach has several advantages in this context: it avoids using criticized deterministic formulations to measure non-observable aspects of the distributors, it allows a broad statistical analysis exploring elements that cannot be investigated through the simple descriptive studies currently developed by the regulator, and finally, it provides tools to properly rank and compare distances between companies. The Bayesian view is a powerful option to handle the SEM fit here, since convergence issues, due to sample size and high dimensionality, may be experienced via classical alternatives based on maximization.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10182-020-00377-2</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-5683-8326</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1863-8171
ispartof Advances in statistical analysis : AStA : a journal of the German Statistical Society, 2021-06, Vol.105 (2), p.353-383
issn 1863-8171
1863-818X
language eng
recordid cdi_proquest_journals_2548929970
source SpringerLink Journals - AutoHoldings
subjects Bayesian analysis
Distributors
Econometrics
Economic models
Economics
Energy distribution
Factor analysis
Finance
Insurance
Management
Mathematical models
Mathematics and Statistics
Multivariate analysis
Multivariate statistical analysis
Original Paper
Probability Theory and Stochastic Processes
Statistical analysis
Statistics
Statistics for Business
Structural equation modeling
Time dependence
title Structural equation modeling with time dependence: an application comparing Brazilian energy distributors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T09%3A20%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20equation%20modeling%20with%20time%20dependence:%20an%20application%20comparing%20Brazilian%20energy%20distributors&rft.jtitle=Advances%20in%20statistical%20analysis%20:%20AStA%20:%20a%20journal%20of%20the%20German%20Statistical%20Society&rft.au=Mayrink,%20Vin%C3%ADcius%20Diniz&rft.date=2021-06-01&rft.volume=105&rft.issue=2&rft.spage=353&rft.epage=383&rft.pages=353-383&rft.issn=1863-8171&rft.eissn=1863-818X&rft_id=info:doi/10.1007/s10182-020-00377-2&rft_dat=%3Cproquest_cross%3E2548929970%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548929970&rft_id=info:pmid/&rfr_iscdi=true