Where do functional traits come from? The role of theory and models

The use of traits is growing in ecology and biodiversity informatics, with initiatives to collate trait data and integrate it into biodiversity databases. A need to develop better predictive capacity for how species respond to environmental change has in part motivated this focus. Functional traits...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Functional ecology 2021-07, Vol.35 (7), p.1385-1396
Hauptverfasser: Kearney, Michael R., Jusup, Marko, McGeoch, Melodie A., Kooijman, Sebastiaan A. L. M., Chown, Steven L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1396
container_issue 7
container_start_page 1385
container_title Functional ecology
container_volume 35
creator Kearney, Michael R.
Jusup, Marko
McGeoch, Melodie A.
Kooijman, Sebastiaan A. L. M.
Chown, Steven L.
description The use of traits is growing in ecology and biodiversity informatics, with initiatives to collate trait data and integrate it into biodiversity databases. A need to develop better predictive capacity for how species respond to environmental change has in part motivated this focus. Functional traits are of most interest—those with a defined link to individual survival, development, growth and reproduction. Non‐trivial challenges arise immediately in deciding which functional traits to prioritise and how to characterise them. Here we discuss the advantages of a theoretical perspective for defining functional traits in the context of dynamical systems models of energy and mass exchange that link organisms to their environments. We argue that the theoretical frameworks upon which such models are built (biophysical ecology, metabolic theory) provide clear criteria to decide upon functional trait definitions, measurement requirements and associated metadata, via their mathematical connection to model parameters and state variables, and thus to system performance (survival, development, growth and reproduction). We distinguish ‘descriptive’ traits from ‘functional’ traits by dividing the latter into four classes—parameter, model, threshold and estimation—according to whether they are model parameters, define model structure, are threshold state variables or can be used to estimate model parameters. We develop a decision tree for this classification and illustrate it in the context of mammalian heat exchange but emphasise the scheme's generality to any kind of organism. We show how a theoretical perspective may change how we prioritise traits for collection and databasing in ways that are not necessarily more difficult to achieve, especially with new technologies, and provide clear guidance for requisite metadata. The use of theoretically driven criteria for prioritising the collection of functional trait data will maximise the generality, quality and consistency of trait databases for comparative analyses. Such databases will simultaneously facilitate the development of integrated predictive modelling frameworks across multiple organisational scales from individuals to ecosystems. ​ A free Plain Language Summary can be found within the Supporting Information of this article. A free Plain Language Summary can be found within the Supporting Information of this article. ​
doi_str_mv 10.1111/1365-2435.13829
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548786657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548786657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4229-4eda2cf6adea1ce2603b43a9bcbf7b8d2b6de7b07648d6faffbfc68705eaadc13</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFbPXhc8p93vJCeR0KpQ8FLxuGx2Z2lK0q27KZJ_b2rEq3N5YXjeYXgQuqdkQcdZUq5kxgSXC8oLVl6g2d_mEs0IU2VWCMWv0U1Ke0JIKRmboepjBxGwC9ifDrZvwsG0uI-m6RO2oQPsY-ge8XYHOIYWcPC430GIAzYHh7vgoE236MqbNsHdb87R-3q1rV6yzdvza_W0yaxgrMwEOMOsV8aBoRaYIrwW3JS1rX1eF47VykFek1yJwilvvK-9VUVOJBjjLOVz9DDdPcbweYLU6304xfHhpJkURV4oJfORWk6UjSGlCF4fY9OZOGhK9NmUPnvRZy_6x9TYkFPjq2lh-A_X61U19b4BNfNrLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548786657</pqid></control><display><type>article</type><title>Where do functional traits come from? The role of theory and models</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kearney, Michael R. ; Jusup, Marko ; McGeoch, Melodie A. ; Kooijman, Sebastiaan A. L. M. ; Chown, Steven L.</creator><creatorcontrib>Kearney, Michael R. ; Jusup, Marko ; McGeoch, Melodie A. ; Kooijman, Sebastiaan A. L. M. ; Chown, Steven L.</creatorcontrib><description>The use of traits is growing in ecology and biodiversity informatics, with initiatives to collate trait data and integrate it into biodiversity databases. A need to develop better predictive capacity for how species respond to environmental change has in part motivated this focus. Functional traits are of most interest—those with a defined link to individual survival, development, growth and reproduction. Non‐trivial challenges arise immediately in deciding which functional traits to prioritise and how to characterise them. Here we discuss the advantages of a theoretical perspective for defining functional traits in the context of dynamical systems models of energy and mass exchange that link organisms to their environments. We argue that the theoretical frameworks upon which such models are built (biophysical ecology, metabolic theory) provide clear criteria to decide upon functional trait definitions, measurement requirements and associated metadata, via their mathematical connection to model parameters and state variables, and thus to system performance (survival, development, growth and reproduction). We distinguish ‘descriptive’ traits from ‘functional’ traits by dividing the latter into four classes—parameter, model, threshold and estimation—according to whether they are model parameters, define model structure, are threshold state variables or can be used to estimate model parameters. We develop a decision tree for this classification and illustrate it in the context of mammalian heat exchange but emphasise the scheme's generality to any kind of organism. We show how a theoretical perspective may change how we prioritise traits for collection and databasing in ways that are not necessarily more difficult to achieve, especially with new technologies, and provide clear guidance for requisite metadata. The use of theoretically driven criteria for prioritising the collection of functional trait data will maximise the generality, quality and consistency of trait databases for comparative analyses. Such databases will simultaneously facilitate the development of integrated predictive modelling frameworks across multiple organisational scales from individuals to ecosystems. ​ A free Plain Language Summary can be found within the Supporting Information of this article. A free Plain Language Summary can be found within the Supporting Information of this article. ​</description><identifier>ISSN: 0269-8463</identifier><identifier>EISSN: 1365-2435</identifier><identifier>DOI: 10.1111/1365-2435.13829</identifier><language>eng</language><publisher>London: Wiley Subscription Services, Inc</publisher><subject>Biodiversity ; biophysics ; Comparative analysis ; Context ; Criteria ; Decision trees ; Ecology ; Environmental changes ; Heat exchange ; Heat transfer ; Informatics ; life history ; Mathematical models ; mechanistic niche models ; metabolic ecology ; Metadata ; New technology ; Parameter estimation ; physiological ecology ; Prediction models ; Reproduction ; State variable ; Survival</subject><ispartof>Functional ecology, 2021-07, Vol.35 (7), p.1385-1396</ispartof><rights>2021 British Ecological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4229-4eda2cf6adea1ce2603b43a9bcbf7b8d2b6de7b07648d6faffbfc68705eaadc13</citedby><cites>FETCH-LOGICAL-c4229-4eda2cf6adea1ce2603b43a9bcbf7b8d2b6de7b07648d6faffbfc68705eaadc13</cites><orcidid>0000-0002-5767-0027 ; 0000-0003-3388-2241 ; 0000-0002-0777-0425 ; 0000-0001-6069-5105 ; 0000-0002-3349-8744</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1365-2435.13829$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1365-2435.13829$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Kearney, Michael R.</creatorcontrib><creatorcontrib>Jusup, Marko</creatorcontrib><creatorcontrib>McGeoch, Melodie A.</creatorcontrib><creatorcontrib>Kooijman, Sebastiaan A. L. M.</creatorcontrib><creatorcontrib>Chown, Steven L.</creatorcontrib><title>Where do functional traits come from? The role of theory and models</title><title>Functional ecology</title><description>The use of traits is growing in ecology and biodiversity informatics, with initiatives to collate trait data and integrate it into biodiversity databases. A need to develop better predictive capacity for how species respond to environmental change has in part motivated this focus. Functional traits are of most interest—those with a defined link to individual survival, development, growth and reproduction. Non‐trivial challenges arise immediately in deciding which functional traits to prioritise and how to characterise them. Here we discuss the advantages of a theoretical perspective for defining functional traits in the context of dynamical systems models of energy and mass exchange that link organisms to their environments. We argue that the theoretical frameworks upon which such models are built (biophysical ecology, metabolic theory) provide clear criteria to decide upon functional trait definitions, measurement requirements and associated metadata, via their mathematical connection to model parameters and state variables, and thus to system performance (survival, development, growth and reproduction). We distinguish ‘descriptive’ traits from ‘functional’ traits by dividing the latter into four classes—parameter, model, threshold and estimation—according to whether they are model parameters, define model structure, are threshold state variables or can be used to estimate model parameters. We develop a decision tree for this classification and illustrate it in the context of mammalian heat exchange but emphasise the scheme's generality to any kind of organism. We show how a theoretical perspective may change how we prioritise traits for collection and databasing in ways that are not necessarily more difficult to achieve, especially with new technologies, and provide clear guidance for requisite metadata. The use of theoretically driven criteria for prioritising the collection of functional trait data will maximise the generality, quality and consistency of trait databases for comparative analyses. Such databases will simultaneously facilitate the development of integrated predictive modelling frameworks across multiple organisational scales from individuals to ecosystems. ​ A free Plain Language Summary can be found within the Supporting Information of this article. A free Plain Language Summary can be found within the Supporting Information of this article. ​</description><subject>Biodiversity</subject><subject>biophysics</subject><subject>Comparative analysis</subject><subject>Context</subject><subject>Criteria</subject><subject>Decision trees</subject><subject>Ecology</subject><subject>Environmental changes</subject><subject>Heat exchange</subject><subject>Heat transfer</subject><subject>Informatics</subject><subject>life history</subject><subject>Mathematical models</subject><subject>mechanistic niche models</subject><subject>metabolic ecology</subject><subject>Metadata</subject><subject>New technology</subject><subject>Parameter estimation</subject><subject>physiological ecology</subject><subject>Prediction models</subject><subject>Reproduction</subject><subject>State variable</subject><subject>Survival</subject><issn>0269-8463</issn><issn>1365-2435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsFbPXhc8p93vJCeR0KpQ8FLxuGx2Z2lK0q27KZJ_b2rEq3N5YXjeYXgQuqdkQcdZUq5kxgSXC8oLVl6g2d_mEs0IU2VWCMWv0U1Ke0JIKRmboepjBxGwC9ifDrZvwsG0uI-m6RO2oQPsY-ge8XYHOIYWcPC430GIAzYHh7vgoE236MqbNsHdb87R-3q1rV6yzdvza_W0yaxgrMwEOMOsV8aBoRaYIrwW3JS1rX1eF47VykFek1yJwilvvK-9VUVOJBjjLOVz9DDdPcbweYLU6304xfHhpJkURV4oJfORWk6UjSGlCF4fY9OZOGhK9NmUPnvRZy_6x9TYkFPjq2lh-A_X61U19b4BNfNrLg</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Kearney, Michael R.</creator><creator>Jusup, Marko</creator><creator>McGeoch, Melodie A.</creator><creator>Kooijman, Sebastiaan A. L. M.</creator><creator>Chown, Steven L.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-5767-0027</orcidid><orcidid>https://orcid.org/0000-0003-3388-2241</orcidid><orcidid>https://orcid.org/0000-0002-0777-0425</orcidid><orcidid>https://orcid.org/0000-0001-6069-5105</orcidid><orcidid>https://orcid.org/0000-0002-3349-8744</orcidid></search><sort><creationdate>202107</creationdate><title>Where do functional traits come from? The role of theory and models</title><author>Kearney, Michael R. ; Jusup, Marko ; McGeoch, Melodie A. ; Kooijman, Sebastiaan A. L. M. ; Chown, Steven L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4229-4eda2cf6adea1ce2603b43a9bcbf7b8d2b6de7b07648d6faffbfc68705eaadc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biodiversity</topic><topic>biophysics</topic><topic>Comparative analysis</topic><topic>Context</topic><topic>Criteria</topic><topic>Decision trees</topic><topic>Ecology</topic><topic>Environmental changes</topic><topic>Heat exchange</topic><topic>Heat transfer</topic><topic>Informatics</topic><topic>life history</topic><topic>Mathematical models</topic><topic>mechanistic niche models</topic><topic>metabolic ecology</topic><topic>Metadata</topic><topic>New technology</topic><topic>Parameter estimation</topic><topic>physiological ecology</topic><topic>Prediction models</topic><topic>Reproduction</topic><topic>State variable</topic><topic>Survival</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kearney, Michael R.</creatorcontrib><creatorcontrib>Jusup, Marko</creatorcontrib><creatorcontrib>McGeoch, Melodie A.</creatorcontrib><creatorcontrib>Kooijman, Sebastiaan A. L. M.</creatorcontrib><creatorcontrib>Chown, Steven L.</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Functional ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kearney, Michael R.</au><au>Jusup, Marko</au><au>McGeoch, Melodie A.</au><au>Kooijman, Sebastiaan A. L. M.</au><au>Chown, Steven L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Where do functional traits come from? The role of theory and models</atitle><jtitle>Functional ecology</jtitle><date>2021-07</date><risdate>2021</risdate><volume>35</volume><issue>7</issue><spage>1385</spage><epage>1396</epage><pages>1385-1396</pages><issn>0269-8463</issn><eissn>1365-2435</eissn><abstract>The use of traits is growing in ecology and biodiversity informatics, with initiatives to collate trait data and integrate it into biodiversity databases. A need to develop better predictive capacity for how species respond to environmental change has in part motivated this focus. Functional traits are of most interest—those with a defined link to individual survival, development, growth and reproduction. Non‐trivial challenges arise immediately in deciding which functional traits to prioritise and how to characterise them. Here we discuss the advantages of a theoretical perspective for defining functional traits in the context of dynamical systems models of energy and mass exchange that link organisms to their environments. We argue that the theoretical frameworks upon which such models are built (biophysical ecology, metabolic theory) provide clear criteria to decide upon functional trait definitions, measurement requirements and associated metadata, via their mathematical connection to model parameters and state variables, and thus to system performance (survival, development, growth and reproduction). We distinguish ‘descriptive’ traits from ‘functional’ traits by dividing the latter into four classes—parameter, model, threshold and estimation—according to whether they are model parameters, define model structure, are threshold state variables or can be used to estimate model parameters. We develop a decision tree for this classification and illustrate it in the context of mammalian heat exchange but emphasise the scheme's generality to any kind of organism. We show how a theoretical perspective may change how we prioritise traits for collection and databasing in ways that are not necessarily more difficult to achieve, especially with new technologies, and provide clear guidance for requisite metadata. The use of theoretically driven criteria for prioritising the collection of functional trait data will maximise the generality, quality and consistency of trait databases for comparative analyses. Such databases will simultaneously facilitate the development of integrated predictive modelling frameworks across multiple organisational scales from individuals to ecosystems. ​ A free Plain Language Summary can be found within the Supporting Information of this article. A free Plain Language Summary can be found within the Supporting Information of this article. ​</abstract><cop>London</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/1365-2435.13829</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5767-0027</orcidid><orcidid>https://orcid.org/0000-0003-3388-2241</orcidid><orcidid>https://orcid.org/0000-0002-0777-0425</orcidid><orcidid>https://orcid.org/0000-0001-6069-5105</orcidid><orcidid>https://orcid.org/0000-0002-3349-8744</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0269-8463
ispartof Functional ecology, 2021-07, Vol.35 (7), p.1385-1396
issn 0269-8463
1365-2435
language eng
recordid cdi_proquest_journals_2548786657
source Wiley Free Content; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Biodiversity
biophysics
Comparative analysis
Context
Criteria
Decision trees
Ecology
Environmental changes
Heat exchange
Heat transfer
Informatics
life history
Mathematical models
mechanistic niche models
metabolic ecology
Metadata
New technology
Parameter estimation
physiological ecology
Prediction models
Reproduction
State variable
Survival
title Where do functional traits come from? The role of theory and models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A43%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Where%20do%20functional%20traits%20come%20from?%20The%20role%20of%20theory%20and%20models&rft.jtitle=Functional%20ecology&rft.au=Kearney,%20Michael%20R.&rft.date=2021-07&rft.volume=35&rft.issue=7&rft.spage=1385&rft.epage=1396&rft.pages=1385-1396&rft.issn=0269-8463&rft.eissn=1365-2435&rft_id=info:doi/10.1111/1365-2435.13829&rft_dat=%3Cproquest_cross%3E2548786657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548786657&rft_id=info:pmid/&rfr_iscdi=true