Hydrothermally derived p–n MoS2–ZnO from p–p MoS2-ZIF-8 for an efficient detection of NO2 at room temperature
Two-dimensional transition metal dichalcogenides (2D-TMDs) and semiconductor metal oxides (MOs) have triggered enormous research attention in the fields of energy storage, catalysis, and gas sensing. However, the poor stability of TMDs in air and the high operating temperature of MOs remain critical...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-07, Vol.9 (26), p.14722-14730 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14730 |
---|---|
container_issue | 26 |
container_start_page | 14722 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 9 |
creator | Ikram, Muhammad He, Lv Liu, Zhuo Shi, Keying Gao, Yongxiang |
description | Two-dimensional transition metal dichalcogenides (2D-TMDs) and semiconductor metal oxides (MOs) have triggered enormous research attention in the fields of energy storage, catalysis, and gas sensing. However, the poor stability of TMDs in air and the high operating temperature of MOs remain critical bottlenecks for their application in practical gas sensing. In this work, a hydrothermal method was developed to convert rhombic p–p MoS2@ZIF-8 into rodlike p–n MoS2@ZnO heterostructure at 150 °C, which displays a large surface area, strong interaction between MoS2 and ZnO, and fast electron transportation. The as-synthesized p–n heterostructure was used to construct a gas sensor for the detection of NO2 at room temperature in air. The sensor showed an over 30-fold enhancement in the response compared to that of pristine MoS2 nanosheets and displayed short response/recovery time while lowering the detection limit of NO2 to 10 ppb. The sensor retained high stability upon sensing repetition for 10 consecutive weeks. This work demonstrated a facile strategy for the synthesis of p–n MoS2–ZnO heterostructures for reliable NO2 gas sensing at room temperature. |
doi_str_mv | 10.1039/d1ta03578a |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2548645957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548645957</sourcerecordid><originalsourceid>FETCH-LOGICAL-p149t-25853065b9497cf6c6b3ed80b1d554e15ccedc693b81386a28d193bc9b7f7b7f3</originalsourceid><addsrcrecordid>eNo9jcFKAzEURYMoWGo3fkHA9WgymWSSpRRrC9VZqJtuSiZ5wSkzkzGTCt35D_5hv8RQxQePd--F8y5C15TcUsLUnaVRE8ZLqc_QJCecZGWhxPm_lvISzcZxR9JIQoRSEzQuDzb4-A6h0217wBZC8wkWD8ev7x4_-Zc8iU1fYRd8d0qHU5ptVotMYucD1j0G5xrTQB8TH8HExvfYO_xc5VhHHHxCI3QDBB33Aa7QhdPtCLO_O0Vvi4fX-TJbV4-r-f06G2ihYpZzyRkRvFaFKo0TRtQMrCQ1tZwXQLkxYI1QrJaUSaFzaWkyRtWlK9OyKbr5_TsE_7GHMW53fh_6VLnNeSFFwRUv2Q9Njl8C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548645957</pqid></control><display><type>article</type><title>Hydrothermally derived p–n MoS2–ZnO from p–p MoS2-ZIF-8 for an efficient detection of NO2 at room temperature</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Ikram, Muhammad ; He, Lv ; Liu, Zhuo ; Shi, Keying ; Gao, Yongxiang</creator><creatorcontrib>Ikram, Muhammad ; He, Lv ; Liu, Zhuo ; Shi, Keying ; Gao, Yongxiang</creatorcontrib><description>Two-dimensional transition metal dichalcogenides (2D-TMDs) and semiconductor metal oxides (MOs) have triggered enormous research attention in the fields of energy storage, catalysis, and gas sensing. However, the poor stability of TMDs in air and the high operating temperature of MOs remain critical bottlenecks for their application in practical gas sensing. In this work, a hydrothermal method was developed to convert rhombic p–p MoS2@ZIF-8 into rodlike p–n MoS2@ZnO heterostructure at 150 °C, which displays a large surface area, strong interaction between MoS2 and ZnO, and fast electron transportation. The as-synthesized p–n heterostructure was used to construct a gas sensor for the detection of NO2 at room temperature in air. The sensor showed an over 30-fold enhancement in the response compared to that of pristine MoS2 nanosheets and displayed short response/recovery time while lowering the detection limit of NO2 to 10 ppb. The sensor retained high stability upon sensing repetition for 10 consecutive weeks. This work demonstrated a facile strategy for the synthesis of p–n MoS2–ZnO heterostructures for reliable NO2 gas sensing at room temperature.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d1ta03578a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Air temperature ; Catalysis ; Energy storage ; Gas sensors ; Heterostructures ; Metal oxides ; Molybdenum disulfide ; Nitrogen dioxide ; Operating temperature ; Recovery time ; Room temperature ; Sensors ; Stability ; Strong interactions (field theory) ; Transition metal compounds ; Zinc oxide</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-07, Vol.9 (26), p.14722-14730</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ikram, Muhammad</creatorcontrib><creatorcontrib>He, Lv</creatorcontrib><creatorcontrib>Liu, Zhuo</creatorcontrib><creatorcontrib>Shi, Keying</creatorcontrib><creatorcontrib>Gao, Yongxiang</creatorcontrib><title>Hydrothermally derived p–n MoS2–ZnO from p–p MoS2-ZIF-8 for an efficient detection of NO2 at room temperature</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Two-dimensional transition metal dichalcogenides (2D-TMDs) and semiconductor metal oxides (MOs) have triggered enormous research attention in the fields of energy storage, catalysis, and gas sensing. However, the poor stability of TMDs in air and the high operating temperature of MOs remain critical bottlenecks for their application in practical gas sensing. In this work, a hydrothermal method was developed to convert rhombic p–p MoS2@ZIF-8 into rodlike p–n MoS2@ZnO heterostructure at 150 °C, which displays a large surface area, strong interaction between MoS2 and ZnO, and fast electron transportation. The as-synthesized p–n heterostructure was used to construct a gas sensor for the detection of NO2 at room temperature in air. The sensor showed an over 30-fold enhancement in the response compared to that of pristine MoS2 nanosheets and displayed short response/recovery time while lowering the detection limit of NO2 to 10 ppb. The sensor retained high stability upon sensing repetition for 10 consecutive weeks. This work demonstrated a facile strategy for the synthesis of p–n MoS2–ZnO heterostructures for reliable NO2 gas sensing at room temperature.</description><subject>Air temperature</subject><subject>Catalysis</subject><subject>Energy storage</subject><subject>Gas sensors</subject><subject>Heterostructures</subject><subject>Metal oxides</subject><subject>Molybdenum disulfide</subject><subject>Nitrogen dioxide</subject><subject>Operating temperature</subject><subject>Recovery time</subject><subject>Room temperature</subject><subject>Sensors</subject><subject>Stability</subject><subject>Strong interactions (field theory)</subject><subject>Transition metal compounds</subject><subject>Zinc oxide</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9jcFKAzEURYMoWGo3fkHA9WgymWSSpRRrC9VZqJtuSiZ5wSkzkzGTCt35D_5hv8RQxQePd--F8y5C15TcUsLUnaVRE8ZLqc_QJCecZGWhxPm_lvISzcZxR9JIQoRSEzQuDzb4-A6h0217wBZC8wkWD8ev7x4_-Zc8iU1fYRd8d0qHU5ptVotMYucD1j0G5xrTQB8TH8HExvfYO_xc5VhHHHxCI3QDBB33Aa7QhdPtCLO_O0Vvi4fX-TJbV4-r-f06G2ihYpZzyRkRvFaFKo0TRtQMrCQ1tZwXQLkxYI1QrJaUSaFzaWkyRtWlK9OyKbr5_TsE_7GHMW53fh_6VLnNeSFFwRUv2Q9Njl8C</recordid><startdate>20210714</startdate><enddate>20210714</enddate><creator>Ikram, Muhammad</creator><creator>He, Lv</creator><creator>Liu, Zhuo</creator><creator>Shi, Keying</creator><creator>Gao, Yongxiang</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20210714</creationdate><title>Hydrothermally derived p–n MoS2–ZnO from p–p MoS2-ZIF-8 for an efficient detection of NO2 at room temperature</title><author>Ikram, Muhammad ; He, Lv ; Liu, Zhuo ; Shi, Keying ; Gao, Yongxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p149t-25853065b9497cf6c6b3ed80b1d554e15ccedc693b81386a28d193bc9b7f7b7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air temperature</topic><topic>Catalysis</topic><topic>Energy storage</topic><topic>Gas sensors</topic><topic>Heterostructures</topic><topic>Metal oxides</topic><topic>Molybdenum disulfide</topic><topic>Nitrogen dioxide</topic><topic>Operating temperature</topic><topic>Recovery time</topic><topic>Room temperature</topic><topic>Sensors</topic><topic>Stability</topic><topic>Strong interactions (field theory)</topic><topic>Transition metal compounds</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ikram, Muhammad</creatorcontrib><creatorcontrib>He, Lv</creatorcontrib><creatorcontrib>Liu, Zhuo</creatorcontrib><creatorcontrib>Shi, Keying</creatorcontrib><creatorcontrib>Gao, Yongxiang</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ikram, Muhammad</au><au>He, Lv</au><au>Liu, Zhuo</au><au>Shi, Keying</au><au>Gao, Yongxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrothermally derived p–n MoS2–ZnO from p–p MoS2-ZIF-8 for an efficient detection of NO2 at room temperature</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2021-07-14</date><risdate>2021</risdate><volume>9</volume><issue>26</issue><spage>14722</spage><epage>14730</epage><pages>14722-14730</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Two-dimensional transition metal dichalcogenides (2D-TMDs) and semiconductor metal oxides (MOs) have triggered enormous research attention in the fields of energy storage, catalysis, and gas sensing. However, the poor stability of TMDs in air and the high operating temperature of MOs remain critical bottlenecks for their application in practical gas sensing. In this work, a hydrothermal method was developed to convert rhombic p–p MoS2@ZIF-8 into rodlike p–n MoS2@ZnO heterostructure at 150 °C, which displays a large surface area, strong interaction between MoS2 and ZnO, and fast electron transportation. The as-synthesized p–n heterostructure was used to construct a gas sensor for the detection of NO2 at room temperature in air. The sensor showed an over 30-fold enhancement in the response compared to that of pristine MoS2 nanosheets and displayed short response/recovery time while lowering the detection limit of NO2 to 10 ppb. The sensor retained high stability upon sensing repetition for 10 consecutive weeks. This work demonstrated a facile strategy for the synthesis of p–n MoS2–ZnO heterostructures for reliable NO2 gas sensing at room temperature.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ta03578a</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2021-07, Vol.9 (26), p.14722-14730 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2548645957 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Air temperature Catalysis Energy storage Gas sensors Heterostructures Metal oxides Molybdenum disulfide Nitrogen dioxide Operating temperature Recovery time Room temperature Sensors Stability Strong interactions (field theory) Transition metal compounds Zinc oxide |
title | Hydrothermally derived p–n MoS2–ZnO from p–p MoS2-ZIF-8 for an efficient detection of NO2 at room temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A49%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrothermally%20derived%20p%E2%80%93n%20MoS2%E2%80%93ZnO%20from%20p%E2%80%93p%20MoS2-ZIF-8%20for%20an%20efficient%20detection%20of%20NO2%20at%20room%20temperature&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Ikram,%20Muhammad&rft.date=2021-07-14&rft.volume=9&rft.issue=26&rft.spage=14722&rft.epage=14730&rft.pages=14722-14730&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d1ta03578a&rft_dat=%3Cproquest%3E2548645957%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548645957&rft_id=info:pmid/&rfr_iscdi=true |