Risk capital and emerging technologies: Innovation and investment patterns based on artificial intelligence patent data analysis
The promise of artificial intelligence (AI) to drive economic growth and improve quality of life has ushered in a new AI arms race. Investments of risk capital fuel this emerging technology. We examine the role that venture capital (VC) and corporate investments of risk capital play in the emergence...
Gespeichert in:
Veröffentlicht in: | Journal of risk and financial management 2019-12, Vol.12 (4), p.1-24 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | Journal of risk and financial management |
container_volume | 12 |
creator | Santos, Roberto S Qin, Lingling |
description | The promise of artificial intelligence (AI) to drive economic growth and improve quality of life has ushered in a new AI arms race. Investments of risk capital fuel this emerging technology. We examine the role that venture capital (VC) and corporate investments of risk capital play in the emergence of AI-related technologies. Drawing upon a dataset of 29,954 U.S. patents from 1970 to 2018, including 1484 U.S. patents granted to 224 VC-backed start-ups, we identify AI-related innovation and investment characteristics. Furthermore, we develop a new measure of knowledge coupling at the firm-level and use this to explore how knowledge coupling influences VC risk capital decisions in emerging AI technologies. Our findings show that knowledge coupling is a better predictor of VC investment in emerging technologies than the breadth of a patent's technological domains. Furthermore, our results show that there are differences in knowledge coupling between private start-ups and public corporations. These findings enhance our understanding of what types of AI innovations are more likely to be selected by VCs and have important implications for our understanding of how risk capital induces the emergence of new technologies. |
doi_str_mv | 10.3390/jrfm12040189 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548582919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548582919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-c7bd2f7a41b63fd9e6ea445afd2930b06da0992a6388543ae7da2488d96940553</originalsourceid><addsrcrecordid>eNpV0E1LAzEQBuBFFCy1N69CwKvVySa7m3gT8QsKguh5mW5ma-o2qUks9OZPd9cK6mnm8Mw7w2TZMYdzITRcLEO74jlI4ErvZSOuOZ8qqOT-n_4wm8S4BAAO_YxQo-zzycY31uDaJuwYOsNoRWFh3YIlal6d7_zCUrxkD875DSbr3beybkMxrcgltsaUKLjI5hjJsAGEZFvb2D7RukRdZxfkGhrkMGAwYR-C3TbaeJQdtNhFmvzUcfZye_N8fT-dPd49XF_Npo1QkKZNNTd5W6Hk81K0RlNJKGWBrcm1gDmUBkHrHEuhVCEFUmUwl0oZXWoJRSHG2ekudx38-0d_e730H6E_ItZ5IVWhcs11r852qgk-xkBtvQ52hWFbc6iHN9d_39xztuPUeGfjLy41rwQUMOw9-UeGEpMPdd6nFUJ8ARb8hto</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548582919</pqid></control><display><type>article</type><title>Risk capital and emerging technologies: Innovation and investment patterns based on artificial intelligence patent data analysis</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Santos, Roberto S ; Qin, Lingling</creator><creatorcontrib>Santos, Roberto S ; Qin, Lingling</creatorcontrib><description>The promise of artificial intelligence (AI) to drive economic growth and improve quality of life has ushered in a new AI arms race. Investments of risk capital fuel this emerging technology. We examine the role that venture capital (VC) and corporate investments of risk capital play in the emergence of AI-related technologies. Drawing upon a dataset of 29,954 U.S. patents from 1970 to 2018, including 1484 U.S. patents granted to 224 VC-backed start-ups, we identify AI-related innovation and investment characteristics. Furthermore, we develop a new measure of knowledge coupling at the firm-level and use this to explore how knowledge coupling influences VC risk capital decisions in emerging AI technologies. Our findings show that knowledge coupling is a better predictor of VC investment in emerging technologies than the breadth of a patent's technological domains. Furthermore, our results show that there are differences in knowledge coupling between private start-ups and public corporations. These findings enhance our understanding of what types of AI innovations are more likely to be selected by VCs and have important implications for our understanding of how risk capital induces the emergence of new technologies.</description><identifier>ISSN: 1911-8074</identifier><identifier>ISSN: 1911-8066</identifier><identifier>EISSN: 1911-8074</identifier><identifier>DOI: 10.3390/jrfm12040189</identifier><language>eng</language><publisher>Basel: MDPI</publisher><subject>Artificial intelligence ; Competition ; Competitive advantage ; emerging technologies ; Entrepreneurship ; Hypotheses ; Influence ; innovation ; Innovations ; Intellectual property ; Knowledge ; Risk capital ; Technological change ; Technology ; Technology adoption ; Venture capital</subject><ispartof>Journal of risk and financial management, 2019-12, Vol.12 (4), p.1-24</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-c7bd2f7a41b63fd9e6ea445afd2930b06da0992a6388543ae7da2488d96940553</citedby><cites>FETCH-LOGICAL-c380t-c7bd2f7a41b63fd9e6ea445afd2930b06da0992a6388543ae7da2488d96940553</cites><orcidid>0000-0003-3592-1080</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Santos, Roberto S</creatorcontrib><creatorcontrib>Qin, Lingling</creatorcontrib><title>Risk capital and emerging technologies: Innovation and investment patterns based on artificial intelligence patent data analysis</title><title>Journal of risk and financial management</title><description>The promise of artificial intelligence (AI) to drive economic growth and improve quality of life has ushered in a new AI arms race. Investments of risk capital fuel this emerging technology. We examine the role that venture capital (VC) and corporate investments of risk capital play in the emergence of AI-related technologies. Drawing upon a dataset of 29,954 U.S. patents from 1970 to 2018, including 1484 U.S. patents granted to 224 VC-backed start-ups, we identify AI-related innovation and investment characteristics. Furthermore, we develop a new measure of knowledge coupling at the firm-level and use this to explore how knowledge coupling influences VC risk capital decisions in emerging AI technologies. Our findings show that knowledge coupling is a better predictor of VC investment in emerging technologies than the breadth of a patent's technological domains. Furthermore, our results show that there are differences in knowledge coupling between private start-ups and public corporations. These findings enhance our understanding of what types of AI innovations are more likely to be selected by VCs and have important implications for our understanding of how risk capital induces the emergence of new technologies.</description><subject>Artificial intelligence</subject><subject>Competition</subject><subject>Competitive advantage</subject><subject>emerging technologies</subject><subject>Entrepreneurship</subject><subject>Hypotheses</subject><subject>Influence</subject><subject>innovation</subject><subject>Innovations</subject><subject>Intellectual property</subject><subject>Knowledge</subject><subject>Risk capital</subject><subject>Technological change</subject><subject>Technology</subject><subject>Technology adoption</subject><subject>Venture capital</subject><issn>1911-8074</issn><issn>1911-8066</issn><issn>1911-8074</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpV0E1LAzEQBuBFFCy1N69CwKvVySa7m3gT8QsKguh5mW5ma-o2qUks9OZPd9cK6mnm8Mw7w2TZMYdzITRcLEO74jlI4ErvZSOuOZ8qqOT-n_4wm8S4BAAO_YxQo-zzycY31uDaJuwYOsNoRWFh3YIlal6d7_zCUrxkD875DSbr3beybkMxrcgltsaUKLjI5hjJsAGEZFvb2D7RukRdZxfkGhrkMGAwYR-C3TbaeJQdtNhFmvzUcfZye_N8fT-dPd49XF_Npo1QkKZNNTd5W6Hk81K0RlNJKGWBrcm1gDmUBkHrHEuhVCEFUmUwl0oZXWoJRSHG2ekudx38-0d_e730H6E_ItZ5IVWhcs11r852qgk-xkBtvQ52hWFbc6iHN9d_39xztuPUeGfjLy41rwQUMOw9-UeGEpMPdd6nFUJ8ARb8hto</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Santos, Roberto S</creator><creator>Qin, Lingling</creator><general>MDPI</general><general>MDPI AG</general><scope>OT2</scope><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X5</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-3592-1080</orcidid></search><sort><creationdate>20191201</creationdate><title>Risk capital and emerging technologies: Innovation and investment patterns based on artificial intelligence patent data analysis</title><author>Santos, Roberto S ; Qin, Lingling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-c7bd2f7a41b63fd9e6ea445afd2930b06da0992a6388543ae7da2488d96940553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial intelligence</topic><topic>Competition</topic><topic>Competitive advantage</topic><topic>emerging technologies</topic><topic>Entrepreneurship</topic><topic>Hypotheses</topic><topic>Influence</topic><topic>innovation</topic><topic>Innovations</topic><topic>Intellectual property</topic><topic>Knowledge</topic><topic>Risk capital</topic><topic>Technological change</topic><topic>Technology</topic><topic>Technology adoption</topic><topic>Venture capital</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, Roberto S</creatorcontrib><creatorcontrib>Qin, Lingling</creatorcontrib><collection>EconStor</collection><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Entrepreneurship Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of risk and financial management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, Roberto S</au><au>Qin, Lingling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Risk capital and emerging technologies: Innovation and investment patterns based on artificial intelligence patent data analysis</atitle><jtitle>Journal of risk and financial management</jtitle><date>2019-12-01</date><risdate>2019</risdate><volume>12</volume><issue>4</issue><spage>1</spage><epage>24</epage><pages>1-24</pages><issn>1911-8074</issn><issn>1911-8066</issn><eissn>1911-8074</eissn><abstract>The promise of artificial intelligence (AI) to drive economic growth and improve quality of life has ushered in a new AI arms race. Investments of risk capital fuel this emerging technology. We examine the role that venture capital (VC) and corporate investments of risk capital play in the emergence of AI-related technologies. Drawing upon a dataset of 29,954 U.S. patents from 1970 to 2018, including 1484 U.S. patents granted to 224 VC-backed start-ups, we identify AI-related innovation and investment characteristics. Furthermore, we develop a new measure of knowledge coupling at the firm-level and use this to explore how knowledge coupling influences VC risk capital decisions in emerging AI technologies. Our findings show that knowledge coupling is a better predictor of VC investment in emerging technologies than the breadth of a patent's technological domains. Furthermore, our results show that there are differences in knowledge coupling between private start-ups and public corporations. These findings enhance our understanding of what types of AI innovations are more likely to be selected by VCs and have important implications for our understanding of how risk capital induces the emergence of new technologies.</abstract><cop>Basel</cop><pub>MDPI</pub><doi>10.3390/jrfm12040189</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-3592-1080</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1911-8074 |
ispartof | Journal of risk and financial management, 2019-12, Vol.12 (4), p.1-24 |
issn | 1911-8074 1911-8066 1911-8074 |
language | eng |
recordid | cdi_proquest_journals_2548582919 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Artificial intelligence Competition Competitive advantage emerging technologies Entrepreneurship Hypotheses Influence innovation Innovations Intellectual property Knowledge Risk capital Technological change Technology Technology adoption Venture capital |
title | Risk capital and emerging technologies: Innovation and investment patterns based on artificial intelligence patent data analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A59%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Risk%20capital%20and%20emerging%20technologies:%20Innovation%20and%20investment%20patterns%20based%20on%20artificial%20intelligence%20patent%20data%20analysis&rft.jtitle=Journal%20of%20risk%20and%20financial%20management&rft.au=Santos,%20Roberto%20S&rft.date=2019-12-01&rft.volume=12&rft.issue=4&rft.spage=1&rft.epage=24&rft.pages=1-24&rft.issn=1911-8074&rft.eissn=1911-8074&rft_id=info:doi/10.3390/jrfm12040189&rft_dat=%3Cproquest_cross%3E2548582919%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548582919&rft_id=info:pmid/&rfr_iscdi=true |