Words in Random Binary Sequences I
When flipping a fair coin, let \(W = L_1L_2...L_N\) with \(L_i\in\{H,T\}\) be a binary word of length \(N=2\) or \(N=3\). In this paper, we establish second- and third-order linear recurrence relations and their generating functions to discuss the probabilities \(p_{W}(n)\) that binary words \(W\) a...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-07 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ennis, Christian Holland, William Mujawar, Omer Narayanan, Aadit Neubrander, Frank Neubrander, Marie Simino, Christina |
description | When flipping a fair coin, let \(W = L_1L_2...L_N\) with \(L_i\in\{H,T\}\) be a binary word of length \(N=2\) or \(N=3\). In this paper, we establish second- and third-order linear recurrence relations and their generating functions to discuss the probabilities \(p_{W}(n)\) that binary words \(W\) appear for the first time after \(n\) coin tosses. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2548480336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548480336</sourcerecordid><originalsourceid>FETCH-proquest_journals_25484803363</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQCs8vSilWyMxTCErMS8nPVXDKzEssqlQITi0sTc1LTi1W8ORhYE1LzClO5YXS3AzKbq4hzh66BUX5QEXFJfFZ-aVFeUCpeCNTEwsTCwNjYzNj4lQBAB6-LT4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548480336</pqid></control><display><type>article</type><title>Words in Random Binary Sequences I</title><source>Freely Accessible Journals</source><creator>Ennis, Christian ; Holland, William ; Mujawar, Omer ; Narayanan, Aadit ; Neubrander, Frank ; Neubrander, Marie ; Simino, Christina</creator><creatorcontrib>Ennis, Christian ; Holland, William ; Mujawar, Omer ; Narayanan, Aadit ; Neubrander, Frank ; Neubrander, Marie ; Simino, Christina</creatorcontrib><description>When flipping a fair coin, let \(W = L_1L_2...L_N\) with \(L_i\in\{H,T\}\) be a binary word of length \(N=2\) or \(N=3\). In this paper, we establish second- and third-order linear recurrence relations and their generating functions to discuss the probabilities \(p_{W}(n)\) that binary words \(W\) appear for the first time after \(n\) coin tosses.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><ispartof>arXiv.org, 2021-07</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Ennis, Christian</creatorcontrib><creatorcontrib>Holland, William</creatorcontrib><creatorcontrib>Mujawar, Omer</creatorcontrib><creatorcontrib>Narayanan, Aadit</creatorcontrib><creatorcontrib>Neubrander, Frank</creatorcontrib><creatorcontrib>Neubrander, Marie</creatorcontrib><creatorcontrib>Simino, Christina</creatorcontrib><title>Words in Random Binary Sequences I</title><title>arXiv.org</title><description>When flipping a fair coin, let \(W = L_1L_2...L_N\) with \(L_i\in\{H,T\}\) be a binary word of length \(N=2\) or \(N=3\). In this paper, we establish second- and third-order linear recurrence relations and their generating functions to discuss the probabilities \(p_{W}(n)\) that binary words \(W\) appear for the first time after \(n\) coin tosses.</description><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQCs8vSilWyMxTCErMS8nPVXDKzEssqlQITi0sTc1LTi1W8ORhYE1LzClO5YXS3AzKbq4hzh66BUX5QEXFJfFZ-aVFeUCpeCNTEwsTCwNjYzNj4lQBAB6-LT4</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Ennis, Christian</creator><creator>Holland, William</creator><creator>Mujawar, Omer</creator><creator>Narayanan, Aadit</creator><creator>Neubrander, Frank</creator><creator>Neubrander, Marie</creator><creator>Simino, Christina</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210701</creationdate><title>Words in Random Binary Sequences I</title><author>Ennis, Christian ; Holland, William ; Mujawar, Omer ; Narayanan, Aadit ; Neubrander, Frank ; Neubrander, Marie ; Simino, Christina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25484803363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Ennis, Christian</creatorcontrib><creatorcontrib>Holland, William</creatorcontrib><creatorcontrib>Mujawar, Omer</creatorcontrib><creatorcontrib>Narayanan, Aadit</creatorcontrib><creatorcontrib>Neubrander, Frank</creatorcontrib><creatorcontrib>Neubrander, Marie</creatorcontrib><creatorcontrib>Simino, Christina</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ennis, Christian</au><au>Holland, William</au><au>Mujawar, Omer</au><au>Narayanan, Aadit</au><au>Neubrander, Frank</au><au>Neubrander, Marie</au><au>Simino, Christina</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Words in Random Binary Sequences I</atitle><jtitle>arXiv.org</jtitle><date>2021-07-01</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>When flipping a fair coin, let \(W = L_1L_2...L_N\) with \(L_i\in\{H,T\}\) be a binary word of length \(N=2\) or \(N=3\). In this paper, we establish second- and third-order linear recurrence relations and their generating functions to discuss the probabilities \(p_{W}(n)\) that binary words \(W\) appear for the first time after \(n\) coin tosses.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2548480336 |
source | Freely Accessible Journals |
title | Words in Random Binary Sequences I |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A13%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Words%20in%20Random%20Binary%20Sequences%20I&rft.jtitle=arXiv.org&rft.au=Ennis,%20Christian&rft.date=2021-07-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2548480336%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548480336&rft_id=info:pmid/&rfr_iscdi=true |