An Improved All-Digital Background Calibration Technique for Channel Mismatches in High Speed Time-Interleaved Analog-to-Digital Converters
The time-interleaved analog-to-digital converters (TIADCs), performance is seriously affected by channel mismatches, especially for the applications in the next-generation communication systems. This work presents an improved all-digital background calibration technique for TIADCs by combining the H...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2020-01, Vol.9 (1), p.73, Article 73 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The time-interleaved analog-to-digital converters (TIADCs), performance is seriously affected by channel mismatches, especially for the applications in the next-generation communication systems. This work presents an improved all-digital background calibration technique for TIADCs by combining the Hadamard transform for calibrating gain and timing mismatches and averaging for offset mismatch cancellation. The numerical simulation results show that the proposed calibration technique completely suppresses the spurious images due to the channel mismatches at the output spectrum, which increases the spurious-free dynamic range (SFDR) and signal-to-noise and distortion ratio (SNDR) by 74 dB and 43.7 dB, respectively. Furthermore, the hardware co-simulation on the field programmable gate array (FPGA) platform is performed to confirm the effectiveness of the proposed calibration technique. The simulation and experimental results clarify the improvement of the proposed calibration technique in the TIADC's performance. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics9010073 |