Optimal Feature Search for Vigilance Estimation Using Deep Reinforcement Learning

A low level of vigilance is one of the main reasons for traffic and industrial accidents. We conducted experiments to evoke the low level of vigilance and record physiological data through single-channel electroencephalogram (EEG) and electrocardiogram (ECG) measurements. In this study, a deep Q-net...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2020-01, Vol.9 (1), p.142
Hauptverfasser: Seok, Woojoon, Yeo, Minsoo, You, Jiwoo, Lee, Heejun, Cho, Taeheum, Hwang, Bosun, Park, Cheolsoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 142
container_title Electronics (Basel)
container_volume 9
creator Seok, Woojoon
Yeo, Minsoo
You, Jiwoo
Lee, Heejun
Cho, Taeheum
Hwang, Bosun
Park, Cheolsoo
description A low level of vigilance is one of the main reasons for traffic and industrial accidents. We conducted experiments to evoke the low level of vigilance and record physiological data through single-channel electroencephalogram (EEG) and electrocardiogram (ECG) measurements. In this study, a deep Q-network (DQN) algorithm was designed, using conventional feature engineering and deep convolutional neural network (CNN) methods, to extract the optimal features. The DQN yielded the optimal features: two CNN features from ECG and two conventional features from EEG. The ECG features were more significant for tracking the transitions within the alertness continuum with the DQN. The classification was performed with a small number of features, and the results were similar to those from using all of the features. This suggests that the DQN could be applied to investigating biomarkers for physiological responses and optimizing the classification system to reduce the input resources.
doi_str_mv 10.3390/electronics9010142
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548449769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548449769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-66fe622bdaac40fd5ad091f73eab735db613a991ad62f6c56d66e8a6e6f73ff73</originalsourceid><addsrcrecordid>eNplkEtLxDAQx4MouKz7BTwFPFfzaNPmKOuuCoXFx3otaTpZs3TTmqQHv71Z1oPgwDAD85vXH6FrSm45l-QOetDRD87qIAklNGdnaMZIKTPJJDv_k1-iRQh7kkxSXnEyQy-bMdqD6vEaVJw84DdQXn9iM3j8YXe2V04DXoUjFO3g8DZYt8MPACN-BesSp-EALuI6NbpUu0IXRvUBFr9xjrbr1fvyKas3j8_L-zrTnMqYCWFAMNZ2SumcmK5QXTrKlBxUW_KiawXlSkqqOsGM0IXohIBKCRCJMcnn6OY0d_TD1wQhNvth8i6tbFiRV3kuSyETxU6U9kMIHkwz-vSK_24oaY7qNf_V4z9Tema5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548449769</pqid></control><display><type>article</type><title>Optimal Feature Search for Vigilance Estimation Using Deep Reinforcement Learning</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Seok, Woojoon ; Yeo, Minsoo ; You, Jiwoo ; Lee, Heejun ; Cho, Taeheum ; Hwang, Bosun ; Park, Cheolsoo</creator><creatorcontrib>Seok, Woojoon ; Yeo, Minsoo ; You, Jiwoo ; Lee, Heejun ; Cho, Taeheum ; Hwang, Bosun ; Park, Cheolsoo</creatorcontrib><description>A low level of vigilance is one of the main reasons for traffic and industrial accidents. We conducted experiments to evoke the low level of vigilance and record physiological data through single-channel electroencephalogram (EEG) and electrocardiogram (ECG) measurements. In this study, a deep Q-network (DQN) algorithm was designed, using conventional feature engineering and deep convolutional neural network (CNN) methods, to extract the optimal features. The DQN yielded the optimal features: two CNN features from ECG and two conventional features from EEG. The ECG features were more significant for tracking the transitions within the alertness continuum with the DQN. The classification was performed with a small number of features, and the results were similar to those from using all of the features. This suggests that the DQN could be applied to investigating biomarkers for physiological responses and optimizing the classification system to reduce the input resources.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics9010142</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Alertness ; Algorithms ; Artificial neural networks ; Biomarkers ; Cardiovascular disease ; Classification ; Decision making ; Deep learning ; Electrocardiography ; Electroencephalography ; Experiments ; Feature extraction ; Low level ; Machine learning ; Monitoring systems ; Neural networks ; Optimization ; Physiological responses ; Physiology ; Sleep</subject><ispartof>Electronics (Basel), 2020-01, Vol.9 (1), p.142</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-66fe622bdaac40fd5ad091f73eab735db613a991ad62f6c56d66e8a6e6f73ff73</citedby><cites>FETCH-LOGICAL-c319t-66fe622bdaac40fd5ad091f73eab735db613a991ad62f6c56d66e8a6e6f73ff73</cites><orcidid>0000-0003-2632-4460 ; 0000-0002-8214-1397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Seok, Woojoon</creatorcontrib><creatorcontrib>Yeo, Minsoo</creatorcontrib><creatorcontrib>You, Jiwoo</creatorcontrib><creatorcontrib>Lee, Heejun</creatorcontrib><creatorcontrib>Cho, Taeheum</creatorcontrib><creatorcontrib>Hwang, Bosun</creatorcontrib><creatorcontrib>Park, Cheolsoo</creatorcontrib><title>Optimal Feature Search for Vigilance Estimation Using Deep Reinforcement Learning</title><title>Electronics (Basel)</title><description>A low level of vigilance is one of the main reasons for traffic and industrial accidents. We conducted experiments to evoke the low level of vigilance and record physiological data through single-channel electroencephalogram (EEG) and electrocardiogram (ECG) measurements. In this study, a deep Q-network (DQN) algorithm was designed, using conventional feature engineering and deep convolutional neural network (CNN) methods, to extract the optimal features. The DQN yielded the optimal features: two CNN features from ECG and two conventional features from EEG. The ECG features were more significant for tracking the transitions within the alertness continuum with the DQN. The classification was performed with a small number of features, and the results were similar to those from using all of the features. This suggests that the DQN could be applied to investigating biomarkers for physiological responses and optimizing the classification system to reduce the input resources.</description><subject>Accuracy</subject><subject>Alertness</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Biomarkers</subject><subject>Cardiovascular disease</subject><subject>Classification</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Electrocardiography</subject><subject>Electroencephalography</subject><subject>Experiments</subject><subject>Feature extraction</subject><subject>Low level</subject><subject>Machine learning</subject><subject>Monitoring systems</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Physiological responses</subject><subject>Physiology</subject><subject>Sleep</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNplkEtLxDAQx4MouKz7BTwFPFfzaNPmKOuuCoXFx3otaTpZs3TTmqQHv71Z1oPgwDAD85vXH6FrSm45l-QOetDRD87qIAklNGdnaMZIKTPJJDv_k1-iRQh7kkxSXnEyQy-bMdqD6vEaVJw84DdQXn9iM3j8YXe2V04DXoUjFO3g8DZYt8MPACN-BesSp-EALuI6NbpUu0IXRvUBFr9xjrbr1fvyKas3j8_L-zrTnMqYCWFAMNZ2SumcmK5QXTrKlBxUW_KiawXlSkqqOsGM0IXohIBKCRCJMcnn6OY0d_TD1wQhNvth8i6tbFiRV3kuSyETxU6U9kMIHkwz-vSK_24oaY7qNf_V4z9Tema5</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Seok, Woojoon</creator><creator>Yeo, Minsoo</creator><creator>You, Jiwoo</creator><creator>Lee, Heejun</creator><creator>Cho, Taeheum</creator><creator>Hwang, Bosun</creator><creator>Park, Cheolsoo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-2632-4460</orcidid><orcidid>https://orcid.org/0000-0002-8214-1397</orcidid></search><sort><creationdate>20200101</creationdate><title>Optimal Feature Search for Vigilance Estimation Using Deep Reinforcement Learning</title><author>Seok, Woojoon ; Yeo, Minsoo ; You, Jiwoo ; Lee, Heejun ; Cho, Taeheum ; Hwang, Bosun ; Park, Cheolsoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-66fe622bdaac40fd5ad091f73eab735db613a991ad62f6c56d66e8a6e6f73ff73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Alertness</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Biomarkers</topic><topic>Cardiovascular disease</topic><topic>Classification</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Electrocardiography</topic><topic>Electroencephalography</topic><topic>Experiments</topic><topic>Feature extraction</topic><topic>Low level</topic><topic>Machine learning</topic><topic>Monitoring systems</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Physiological responses</topic><topic>Physiology</topic><topic>Sleep</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seok, Woojoon</creatorcontrib><creatorcontrib>Yeo, Minsoo</creatorcontrib><creatorcontrib>You, Jiwoo</creatorcontrib><creatorcontrib>Lee, Heejun</creatorcontrib><creatorcontrib>Cho, Taeheum</creatorcontrib><creatorcontrib>Hwang, Bosun</creatorcontrib><creatorcontrib>Park, Cheolsoo</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seok, Woojoon</au><au>Yeo, Minsoo</au><au>You, Jiwoo</au><au>Lee, Heejun</au><au>Cho, Taeheum</au><au>Hwang, Bosun</au><au>Park, Cheolsoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Feature Search for Vigilance Estimation Using Deep Reinforcement Learning</atitle><jtitle>Electronics (Basel)</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>9</volume><issue>1</issue><spage>142</spage><pages>142-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>A low level of vigilance is one of the main reasons for traffic and industrial accidents. We conducted experiments to evoke the low level of vigilance and record physiological data through single-channel electroencephalogram (EEG) and electrocardiogram (ECG) measurements. In this study, a deep Q-network (DQN) algorithm was designed, using conventional feature engineering and deep convolutional neural network (CNN) methods, to extract the optimal features. The DQN yielded the optimal features: two CNN features from ECG and two conventional features from EEG. The ECG features were more significant for tracking the transitions within the alertness continuum with the DQN. The classification was performed with a small number of features, and the results were similar to those from using all of the features. This suggests that the DQN could be applied to investigating biomarkers for physiological responses and optimizing the classification system to reduce the input resources.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics9010142</doi><orcidid>https://orcid.org/0000-0003-2632-4460</orcidid><orcidid>https://orcid.org/0000-0002-8214-1397</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2020-01, Vol.9 (1), p.142
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2548449769
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Accuracy
Alertness
Algorithms
Artificial neural networks
Biomarkers
Cardiovascular disease
Classification
Decision making
Deep learning
Electrocardiography
Electroencephalography
Experiments
Feature extraction
Low level
Machine learning
Monitoring systems
Neural networks
Optimization
Physiological responses
Physiology
Sleep
title Optimal Feature Search for Vigilance Estimation Using Deep Reinforcement Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A34%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Feature%20Search%20for%20Vigilance%20Estimation%20Using%20Deep%20Reinforcement%20Learning&rft.jtitle=Electronics%20(Basel)&rft.au=Seok,%20Woojoon&rft.date=2020-01-01&rft.volume=9&rft.issue=1&rft.spage=142&rft.pages=142-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics9010142&rft_dat=%3Cproquest_cross%3E2548449769%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548449769&rft_id=info:pmid/&rfr_iscdi=true