Optimal Feature Search for Vigilance Estimation Using Deep Reinforcement Learning
A low level of vigilance is one of the main reasons for traffic and industrial accidents. We conducted experiments to evoke the low level of vigilance and record physiological data through single-channel electroencephalogram (EEG) and electrocardiogram (ECG) measurements. In this study, a deep Q-net...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2020-01, Vol.9 (1), p.142 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 142 |
container_title | Electronics (Basel) |
container_volume | 9 |
creator | Seok, Woojoon Yeo, Minsoo You, Jiwoo Lee, Heejun Cho, Taeheum Hwang, Bosun Park, Cheolsoo |
description | A low level of vigilance is one of the main reasons for traffic and industrial accidents. We conducted experiments to evoke the low level of vigilance and record physiological data through single-channel electroencephalogram (EEG) and electrocardiogram (ECG) measurements. In this study, a deep Q-network (DQN) algorithm was designed, using conventional feature engineering and deep convolutional neural network (CNN) methods, to extract the optimal features. The DQN yielded the optimal features: two CNN features from ECG and two conventional features from EEG. The ECG features were more significant for tracking the transitions within the alertness continuum with the DQN. The classification was performed with a small number of features, and the results were similar to those from using all of the features. This suggests that the DQN could be applied to investigating biomarkers for physiological responses and optimizing the classification system to reduce the input resources. |
doi_str_mv | 10.3390/electronics9010142 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548449769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548449769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-66fe622bdaac40fd5ad091f73eab735db613a991ad62f6c56d66e8a6e6f73ff73</originalsourceid><addsrcrecordid>eNplkEtLxDAQx4MouKz7BTwFPFfzaNPmKOuuCoXFx3otaTpZs3TTmqQHv71Z1oPgwDAD85vXH6FrSm45l-QOetDRD87qIAklNGdnaMZIKTPJJDv_k1-iRQh7kkxSXnEyQy-bMdqD6vEaVJw84DdQXn9iM3j8YXe2V04DXoUjFO3g8DZYt8MPACN-BesSp-EALuI6NbpUu0IXRvUBFr9xjrbr1fvyKas3j8_L-zrTnMqYCWFAMNZ2SumcmK5QXTrKlBxUW_KiawXlSkqqOsGM0IXohIBKCRCJMcnn6OY0d_TD1wQhNvth8i6tbFiRV3kuSyETxU6U9kMIHkwz-vSK_24oaY7qNf_V4z9Tema5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548449769</pqid></control><display><type>article</type><title>Optimal Feature Search for Vigilance Estimation Using Deep Reinforcement Learning</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Seok, Woojoon ; Yeo, Minsoo ; You, Jiwoo ; Lee, Heejun ; Cho, Taeheum ; Hwang, Bosun ; Park, Cheolsoo</creator><creatorcontrib>Seok, Woojoon ; Yeo, Minsoo ; You, Jiwoo ; Lee, Heejun ; Cho, Taeheum ; Hwang, Bosun ; Park, Cheolsoo</creatorcontrib><description>A low level of vigilance is one of the main reasons for traffic and industrial accidents. We conducted experiments to evoke the low level of vigilance and record physiological data through single-channel electroencephalogram (EEG) and electrocardiogram (ECG) measurements. In this study, a deep Q-network (DQN) algorithm was designed, using conventional feature engineering and deep convolutional neural network (CNN) methods, to extract the optimal features. The DQN yielded the optimal features: two CNN features from ECG and two conventional features from EEG. The ECG features were more significant for tracking the transitions within the alertness continuum with the DQN. The classification was performed with a small number of features, and the results were similar to those from using all of the features. This suggests that the DQN could be applied to investigating biomarkers for physiological responses and optimizing the classification system to reduce the input resources.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics9010142</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Alertness ; Algorithms ; Artificial neural networks ; Biomarkers ; Cardiovascular disease ; Classification ; Decision making ; Deep learning ; Electrocardiography ; Electroencephalography ; Experiments ; Feature extraction ; Low level ; Machine learning ; Monitoring systems ; Neural networks ; Optimization ; Physiological responses ; Physiology ; Sleep</subject><ispartof>Electronics (Basel), 2020-01, Vol.9 (1), p.142</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-66fe622bdaac40fd5ad091f73eab735db613a991ad62f6c56d66e8a6e6f73ff73</citedby><cites>FETCH-LOGICAL-c319t-66fe622bdaac40fd5ad091f73eab735db613a991ad62f6c56d66e8a6e6f73ff73</cites><orcidid>0000-0003-2632-4460 ; 0000-0002-8214-1397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Seok, Woojoon</creatorcontrib><creatorcontrib>Yeo, Minsoo</creatorcontrib><creatorcontrib>You, Jiwoo</creatorcontrib><creatorcontrib>Lee, Heejun</creatorcontrib><creatorcontrib>Cho, Taeheum</creatorcontrib><creatorcontrib>Hwang, Bosun</creatorcontrib><creatorcontrib>Park, Cheolsoo</creatorcontrib><title>Optimal Feature Search for Vigilance Estimation Using Deep Reinforcement Learning</title><title>Electronics (Basel)</title><description>A low level of vigilance is one of the main reasons for traffic and industrial accidents. We conducted experiments to evoke the low level of vigilance and record physiological data through single-channel electroencephalogram (EEG) and electrocardiogram (ECG) measurements. In this study, a deep Q-network (DQN) algorithm was designed, using conventional feature engineering and deep convolutional neural network (CNN) methods, to extract the optimal features. The DQN yielded the optimal features: two CNN features from ECG and two conventional features from EEG. The ECG features were more significant for tracking the transitions within the alertness continuum with the DQN. The classification was performed with a small number of features, and the results were similar to those from using all of the features. This suggests that the DQN could be applied to investigating biomarkers for physiological responses and optimizing the classification system to reduce the input resources.</description><subject>Accuracy</subject><subject>Alertness</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Biomarkers</subject><subject>Cardiovascular disease</subject><subject>Classification</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Electrocardiography</subject><subject>Electroencephalography</subject><subject>Experiments</subject><subject>Feature extraction</subject><subject>Low level</subject><subject>Machine learning</subject><subject>Monitoring systems</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Physiological responses</subject><subject>Physiology</subject><subject>Sleep</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNplkEtLxDAQx4MouKz7BTwFPFfzaNPmKOuuCoXFx3otaTpZs3TTmqQHv71Z1oPgwDAD85vXH6FrSm45l-QOetDRD87qIAklNGdnaMZIKTPJJDv_k1-iRQh7kkxSXnEyQy-bMdqD6vEaVJw84DdQXn9iM3j8YXe2V04DXoUjFO3g8DZYt8MPACN-BesSp-EALuI6NbpUu0IXRvUBFr9xjrbr1fvyKas3j8_L-zrTnMqYCWFAMNZ2SumcmK5QXTrKlBxUW_KiawXlSkqqOsGM0IXohIBKCRCJMcnn6OY0d_TD1wQhNvth8i6tbFiRV3kuSyETxU6U9kMIHkwz-vSK_24oaY7qNf_V4z9Tema5</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Seok, Woojoon</creator><creator>Yeo, Minsoo</creator><creator>You, Jiwoo</creator><creator>Lee, Heejun</creator><creator>Cho, Taeheum</creator><creator>Hwang, Bosun</creator><creator>Park, Cheolsoo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-2632-4460</orcidid><orcidid>https://orcid.org/0000-0002-8214-1397</orcidid></search><sort><creationdate>20200101</creationdate><title>Optimal Feature Search for Vigilance Estimation Using Deep Reinforcement Learning</title><author>Seok, Woojoon ; Yeo, Minsoo ; You, Jiwoo ; Lee, Heejun ; Cho, Taeheum ; Hwang, Bosun ; Park, Cheolsoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-66fe622bdaac40fd5ad091f73eab735db613a991ad62f6c56d66e8a6e6f73ff73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Alertness</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Biomarkers</topic><topic>Cardiovascular disease</topic><topic>Classification</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Electrocardiography</topic><topic>Electroencephalography</topic><topic>Experiments</topic><topic>Feature extraction</topic><topic>Low level</topic><topic>Machine learning</topic><topic>Monitoring systems</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Physiological responses</topic><topic>Physiology</topic><topic>Sleep</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seok, Woojoon</creatorcontrib><creatorcontrib>Yeo, Minsoo</creatorcontrib><creatorcontrib>You, Jiwoo</creatorcontrib><creatorcontrib>Lee, Heejun</creatorcontrib><creatorcontrib>Cho, Taeheum</creatorcontrib><creatorcontrib>Hwang, Bosun</creatorcontrib><creatorcontrib>Park, Cheolsoo</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seok, Woojoon</au><au>Yeo, Minsoo</au><au>You, Jiwoo</au><au>Lee, Heejun</au><au>Cho, Taeheum</au><au>Hwang, Bosun</au><au>Park, Cheolsoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Feature Search for Vigilance Estimation Using Deep Reinforcement Learning</atitle><jtitle>Electronics (Basel)</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>9</volume><issue>1</issue><spage>142</spage><pages>142-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>A low level of vigilance is one of the main reasons for traffic and industrial accidents. We conducted experiments to evoke the low level of vigilance and record physiological data through single-channel electroencephalogram (EEG) and electrocardiogram (ECG) measurements. In this study, a deep Q-network (DQN) algorithm was designed, using conventional feature engineering and deep convolutional neural network (CNN) methods, to extract the optimal features. The DQN yielded the optimal features: two CNN features from ECG and two conventional features from EEG. The ECG features were more significant for tracking the transitions within the alertness continuum with the DQN. The classification was performed with a small number of features, and the results were similar to those from using all of the features. This suggests that the DQN could be applied to investigating biomarkers for physiological responses and optimizing the classification system to reduce the input resources.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics9010142</doi><orcidid>https://orcid.org/0000-0003-2632-4460</orcidid><orcidid>https://orcid.org/0000-0002-8214-1397</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2020-01, Vol.9 (1), p.142 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2548449769 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Accuracy Alertness Algorithms Artificial neural networks Biomarkers Cardiovascular disease Classification Decision making Deep learning Electrocardiography Electroencephalography Experiments Feature extraction Low level Machine learning Monitoring systems Neural networks Optimization Physiological responses Physiology Sleep |
title | Optimal Feature Search for Vigilance Estimation Using Deep Reinforcement Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A34%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Feature%20Search%20for%20Vigilance%20Estimation%20Using%20Deep%20Reinforcement%20Learning&rft.jtitle=Electronics%20(Basel)&rft.au=Seok,%20Woojoon&rft.date=2020-01-01&rft.volume=9&rft.issue=1&rft.spage=142&rft.pages=142-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics9010142&rft_dat=%3Cproquest_cross%3E2548449769%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548449769&rft_id=info:pmid/&rfr_iscdi=true |