Methodology for Indoor Positioning and Landing of an Unmanned Aerial Vehicle in a Smart Manufacturing Plant for Light Part Delivery
Unmanned aerial vehicles (UAV) are spreading their usage in many areas, including last-mile distribution. In this research, a UAV is used for performing light parts delivery to workstation operators within a manufacturing plant, where GPS is no valid solution for indoor positioning. A generic locali...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2020-10, Vol.9 (10), p.1680 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 1680 |
container_title | Electronics (Basel) |
container_volume | 9 |
creator | Orgeira-Crespo, Pedro Ulloa, Carlos Rey-Gonzalez, Guillermo Pérez García, José Antonio |
description | Unmanned aerial vehicles (UAV) are spreading their usage in many areas, including last-mile distribution. In this research, a UAV is used for performing light parts delivery to workstation operators within a manufacturing plant, where GPS is no valid solution for indoor positioning. A generic localization solution is designed to provide navigation using RFID received signal strength measures and sonar values. A system on chip computer is onboarded with two missions: first, compute positioning and provide communication with backend software; second, provide an artificial vision system that cooperates with UAV’s navigation to perform landing procedures. An Industrial Internet of Things solution is defined for workstations to allow wireless mesh communication between the logistics vehicle and the backend software. Design is corroborated through experiments that validate planned solutions. |
doi_str_mv | 10.3390/electronics9101680 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548434682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548434682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9190091f5ef1120e4d591e4f7544f58a1cc6e51920b8841b74d483057bb85fe03</originalsourceid><addsrcrecordid>eNplUE1PwzAMjRBITGN_gFMkzoWkTdbkOI2vSZ2YBONapa2zZeqSkaZIO_PHSRkHJHzws6XnZ_shdE3JbZZJcgct1ME7a-pOUkKngpyhUUpymchUpud_6ks06bodiSFpJjIyQl9LCFvXuNZtjlg7jxe2cRFWrjPBRE27wco2uIhpqJ2OLV7bvbIWGjwDb1SL32Fr6hawsVjh173yAS-V7bWqQ--HsVWrbPjRL8xmG_BqoNxDaz7BH6_QhVZtB5NfHKP148Pb_DkpXp4W81mR1BmVIZFUDndrDprSlABruKTAdM4Z01woWtdT4FSmpBKC0SpnDYs_8ryqBNdAsjG6OekevPvooQvlzvXexpVlyplgGZuKNLLSE6v2rus86PLgTXzpWFJSDn6X__3OvgGcG3aq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548434682</pqid></control><display><type>article</type><title>Methodology for Indoor Positioning and Landing of an Unmanned Aerial Vehicle in a Smart Manufacturing Plant for Light Part Delivery</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Orgeira-Crespo, Pedro ; Ulloa, Carlos ; Rey-Gonzalez, Guillermo ; Pérez García, José Antonio</creator><creatorcontrib>Orgeira-Crespo, Pedro ; Ulloa, Carlos ; Rey-Gonzalez, Guillermo ; Pérez García, José Antonio</creatorcontrib><description>Unmanned aerial vehicles (UAV) are spreading their usage in many areas, including last-mile distribution. In this research, a UAV is used for performing light parts delivery to workstation operators within a manufacturing plant, where GPS is no valid solution for indoor positioning. A generic localization solution is designed to provide navigation using RFID received signal strength measures and sonar values. A system on chip computer is onboarded with two missions: first, compute positioning and provide communication with backend software; second, provide an artificial vision system that cooperates with UAV’s navigation to perform landing procedures. An Industrial Internet of Things solution is defined for workstations to allow wireless mesh communication between the logistics vehicle and the backend software. Design is corroborated through experiments that validate planned solutions.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics9101680</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Artificial vision ; Cameras ; Communication ; Industrial applications ; Internet of Things ; Landing ; Localization ; Logistics ; Manufacturing ; Navigation ; Radio frequency identification ; Signal strength ; Software ; System on chip ; Telemetry ; Unmanned aerial vehicles ; Vision systems ; Wireless communications ; Work stations ; Workstations</subject><ispartof>Electronics (Basel), 2020-10, Vol.9 (10), p.1680</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9190091f5ef1120e4d591e4f7544f58a1cc6e51920b8841b74d483057bb85fe03</citedby><cites>FETCH-LOGICAL-c319t-9190091f5ef1120e4d591e4f7544f58a1cc6e51920b8841b74d483057bb85fe03</cites><orcidid>0000-0002-1529-297X ; 0000-0003-2734-4586 ; 0000-0002-1180-1407</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Orgeira-Crespo, Pedro</creatorcontrib><creatorcontrib>Ulloa, Carlos</creatorcontrib><creatorcontrib>Rey-Gonzalez, Guillermo</creatorcontrib><creatorcontrib>Pérez García, José Antonio</creatorcontrib><title>Methodology for Indoor Positioning and Landing of an Unmanned Aerial Vehicle in a Smart Manufacturing Plant for Light Part Delivery</title><title>Electronics (Basel)</title><description>Unmanned aerial vehicles (UAV) are spreading their usage in many areas, including last-mile distribution. In this research, a UAV is used for performing light parts delivery to workstation operators within a manufacturing plant, where GPS is no valid solution for indoor positioning. A generic localization solution is designed to provide navigation using RFID received signal strength measures and sonar values. A system on chip computer is onboarded with two missions: first, compute positioning and provide communication with backend software; second, provide an artificial vision system that cooperates with UAV’s navigation to perform landing procedures. An Industrial Internet of Things solution is defined for workstations to allow wireless mesh communication between the logistics vehicle and the backend software. Design is corroborated through experiments that validate planned solutions.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial vision</subject><subject>Cameras</subject><subject>Communication</subject><subject>Industrial applications</subject><subject>Internet of Things</subject><subject>Landing</subject><subject>Localization</subject><subject>Logistics</subject><subject>Manufacturing</subject><subject>Navigation</subject><subject>Radio frequency identification</subject><subject>Signal strength</subject><subject>Software</subject><subject>System on chip</subject><subject>Telemetry</subject><subject>Unmanned aerial vehicles</subject><subject>Vision systems</subject><subject>Wireless communications</subject><subject>Work stations</subject><subject>Workstations</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNplUE1PwzAMjRBITGN_gFMkzoWkTdbkOI2vSZ2YBONapa2zZeqSkaZIO_PHSRkHJHzws6XnZ_shdE3JbZZJcgct1ME7a-pOUkKngpyhUUpymchUpud_6ks06bodiSFpJjIyQl9LCFvXuNZtjlg7jxe2cRFWrjPBRE27wco2uIhpqJ2OLV7bvbIWGjwDb1SL32Fr6hawsVjh173yAS-V7bWqQ--HsVWrbPjRL8xmG_BqoNxDaz7BH6_QhVZtB5NfHKP148Pb_DkpXp4W81mR1BmVIZFUDndrDprSlABruKTAdM4Z01woWtdT4FSmpBKC0SpnDYs_8ryqBNdAsjG6OekevPvooQvlzvXexpVlyplgGZuKNLLSE6v2rus86PLgTXzpWFJSDn6X__3OvgGcG3aq</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Orgeira-Crespo, Pedro</creator><creator>Ulloa, Carlos</creator><creator>Rey-Gonzalez, Guillermo</creator><creator>Pérez García, José Antonio</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-1529-297X</orcidid><orcidid>https://orcid.org/0000-0003-2734-4586</orcidid><orcidid>https://orcid.org/0000-0002-1180-1407</orcidid></search><sort><creationdate>20201001</creationdate><title>Methodology for Indoor Positioning and Landing of an Unmanned Aerial Vehicle in a Smart Manufacturing Plant for Light Part Delivery</title><author>Orgeira-Crespo, Pedro ; Ulloa, Carlos ; Rey-Gonzalez, Guillermo ; Pérez García, José Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9190091f5ef1120e4d591e4f7544f58a1cc6e51920b8841b74d483057bb85fe03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial vision</topic><topic>Cameras</topic><topic>Communication</topic><topic>Industrial applications</topic><topic>Internet of Things</topic><topic>Landing</topic><topic>Localization</topic><topic>Logistics</topic><topic>Manufacturing</topic><topic>Navigation</topic><topic>Radio frequency identification</topic><topic>Signal strength</topic><topic>Software</topic><topic>System on chip</topic><topic>Telemetry</topic><topic>Unmanned aerial vehicles</topic><topic>Vision systems</topic><topic>Wireless communications</topic><topic>Work stations</topic><topic>Workstations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orgeira-Crespo, Pedro</creatorcontrib><creatorcontrib>Ulloa, Carlos</creatorcontrib><creatorcontrib>Rey-Gonzalez, Guillermo</creatorcontrib><creatorcontrib>Pérez García, José Antonio</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orgeira-Crespo, Pedro</au><au>Ulloa, Carlos</au><au>Rey-Gonzalez, Guillermo</au><au>Pérez García, José Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methodology for Indoor Positioning and Landing of an Unmanned Aerial Vehicle in a Smart Manufacturing Plant for Light Part Delivery</atitle><jtitle>Electronics (Basel)</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>9</volume><issue>10</issue><spage>1680</spage><pages>1680-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Unmanned aerial vehicles (UAV) are spreading their usage in many areas, including last-mile distribution. In this research, a UAV is used for performing light parts delivery to workstation operators within a manufacturing plant, where GPS is no valid solution for indoor positioning. A generic localization solution is designed to provide navigation using RFID received signal strength measures and sonar values. A system on chip computer is onboarded with two missions: first, compute positioning and provide communication with backend software; second, provide an artificial vision system that cooperates with UAV’s navigation to perform landing procedures. An Industrial Internet of Things solution is defined for workstations to allow wireless mesh communication between the logistics vehicle and the backend software. Design is corroborated through experiments that validate planned solutions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics9101680</doi><orcidid>https://orcid.org/0000-0002-1529-297X</orcidid><orcidid>https://orcid.org/0000-0003-2734-4586</orcidid><orcidid>https://orcid.org/0000-0002-1180-1407</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2020-10, Vol.9 (10), p.1680 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2548434682 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Algorithms Artificial vision Cameras Communication Industrial applications Internet of Things Landing Localization Logistics Manufacturing Navigation Radio frequency identification Signal strength Software System on chip Telemetry Unmanned aerial vehicles Vision systems Wireless communications Work stations Workstations |
title | Methodology for Indoor Positioning and Landing of an Unmanned Aerial Vehicle in a Smart Manufacturing Plant for Light Part Delivery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A01%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methodology%20for%20Indoor%20Positioning%20and%20Landing%20of%20an%20Unmanned%20Aerial%20Vehicle%20in%20a%20Smart%20Manufacturing%20Plant%20for%20Light%20Part%20Delivery&rft.jtitle=Electronics%20(Basel)&rft.au=Orgeira-Crespo,%20Pedro&rft.date=2020-10-01&rft.volume=9&rft.issue=10&rft.spage=1680&rft.pages=1680-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics9101680&rft_dat=%3Cproquest_cross%3E2548434682%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548434682&rft_id=info:pmid/&rfr_iscdi=true |