An Efficient and Unique TF/IDF Algorithmic Model-Based Data Analysis for Handling Applications with Big Data Streaming
As the field of data science grows, document analytics has become a more challenging task for rough classification, response analysis, and text summarization. These tasks are used for the analysis of text data from various intelligent sensing systems. The conventional approach for data analytics and...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2019-11, Vol.8 (11), p.1331 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 1331 |
container_title | Electronics (Basel) |
container_volume | 8 |
creator | Iwendi, Celestine Ponnan, Suresh Munirathinam, Revathi Srinivasan, Kathiravan Chang, Chuan-Yu |
description | As the field of data science grows, document analytics has become a more challenging task for rough classification, response analysis, and text summarization. These tasks are used for the analysis of text data from various intelligent sensing systems. The conventional approach for data analytics and text processing is not useful for big data coming from intelligent systems. This work proposes a novel TF/IDF algorithm with the temporal Louvain approach to solve the above problem. Such an approach is supposed to help the categorization of documents into hierarchical structures showing the relationship between variables, which is a boon to analysts making essential decisions. This paper used public corpora, such as Reuters-21578 and 20 Newsgroups for massive-data analytic experimentation. The result shows the efficacy of the proposed algorithm in terms of accuracy and execution time across six datasets. The proposed approach is validated to bring value to big text data analysis. Big data handling with map-reduce has led to tremendous growth and support for tasks like categorization, sentiment analysis, and higher-quality accuracy from the input data. Outperforming the state-of-the-art approach in terms of accuracy and execution time for six datasets ensures proper validation. |
doi_str_mv | 10.3390/electronics8111331 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548422648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548422648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-571d80099ed9a033106ad2bb35f2aeb46f6a34d43d21f6d78ad58348e64f85433</originalsourceid><addsrcrecordid>eNplkEtLAzEUhYMoWLR_wFXA9di8Zpospy9bqLiwXQ_pJKkp02RMUqX_3khdCN7NvYvzXc45ADxg9ESpQCPd6TYF72wbOcaYUnwFBgSNRSGIINd_7lswjPGA8ghMOUUD8Fk7ODfGtla7BKVTcOvsx0nDzWK0mi1g3e19sOn9aFv44pXuiomMWsGZTBLWTnbnaCM0PsBlhjvr9rDu-862MlnvIvzKLJzY_QV4S0HLYxbdgxsju6iHv_sObBfzzXRZrF-fV9N6XbQUi1SUY6x4Niu0EhLlYKiSiux2tDRE6h2rTCUpU4wqgk2lxlyqklPGdcUMLxmld-Dx8rcPPqeKqTn4U8i2Y0NKxhkhFeNZRS6qNvgYgzZNH-xRhnODUfNTcfO_YvoNvMRxOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548422648</pqid></control><display><type>article</type><title>An Efficient and Unique TF/IDF Algorithmic Model-Based Data Analysis for Handling Applications with Big Data Streaming</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Iwendi, Celestine ; Ponnan, Suresh ; Munirathinam, Revathi ; Srinivasan, Kathiravan ; Chang, Chuan-Yu</creator><creatorcontrib>Iwendi, Celestine ; Ponnan, Suresh ; Munirathinam, Revathi ; Srinivasan, Kathiravan ; Chang, Chuan-Yu</creatorcontrib><description>As the field of data science grows, document analytics has become a more challenging task for rough classification, response analysis, and text summarization. These tasks are used for the analysis of text data from various intelligent sensing systems. The conventional approach for data analytics and text processing is not useful for big data coming from intelligent systems. This work proposes a novel TF/IDF algorithm with the temporal Louvain approach to solve the above problem. Such an approach is supposed to help the categorization of documents into hierarchical structures showing the relationship between variables, which is a boon to analysts making essential decisions. This paper used public corpora, such as Reuters-21578 and 20 Newsgroups for massive-data analytic experimentation. The result shows the efficacy of the proposed algorithm in terms of accuracy and execution time across six datasets. The proposed approach is validated to bring value to big text data analysis. Big data handling with map-reduce has led to tremendous growth and support for tasks like categorization, sentiment analysis, and higher-quality accuracy from the input data. Outperforming the state-of-the-art approach in terms of accuracy and execution time for six datasets ensures proper validation.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics8111331</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Big Data ; Classification ; Clustering ; Data analysis ; Data collection ; Data mining ; Data transmission ; Datasets ; Decision analysis ; Experimentation ; Literature reviews ; Optimization ; Queries ; Research methodology ; Sensors ; Social networks ; Structural hierarchy ; Traffic flow</subject><ispartof>Electronics (Basel), 2019-11, Vol.8 (11), p.1331</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-571d80099ed9a033106ad2bb35f2aeb46f6a34d43d21f6d78ad58348e64f85433</citedby><cites>FETCH-LOGICAL-c319t-571d80099ed9a033106ad2bb35f2aeb46f6a34d43d21f6d78ad58348e64f85433</cites><orcidid>0000-0001-9476-8130 ; 0000-0003-4350-3911 ; 0000-0002-0488-972X ; 0000-0002-9352-0237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Iwendi, Celestine</creatorcontrib><creatorcontrib>Ponnan, Suresh</creatorcontrib><creatorcontrib>Munirathinam, Revathi</creatorcontrib><creatorcontrib>Srinivasan, Kathiravan</creatorcontrib><creatorcontrib>Chang, Chuan-Yu</creatorcontrib><title>An Efficient and Unique TF/IDF Algorithmic Model-Based Data Analysis for Handling Applications with Big Data Streaming</title><title>Electronics (Basel)</title><description>As the field of data science grows, document analytics has become a more challenging task for rough classification, response analysis, and text summarization. These tasks are used for the analysis of text data from various intelligent sensing systems. The conventional approach for data analytics and text processing is not useful for big data coming from intelligent systems. This work proposes a novel TF/IDF algorithm with the temporal Louvain approach to solve the above problem. Such an approach is supposed to help the categorization of documents into hierarchical structures showing the relationship between variables, which is a boon to analysts making essential decisions. This paper used public corpora, such as Reuters-21578 and 20 Newsgroups for massive-data analytic experimentation. The result shows the efficacy of the proposed algorithm in terms of accuracy and execution time across six datasets. The proposed approach is validated to bring value to big text data analysis. Big data handling with map-reduce has led to tremendous growth and support for tasks like categorization, sentiment analysis, and higher-quality accuracy from the input data. Outperforming the state-of-the-art approach in terms of accuracy and execution time for six datasets ensures proper validation.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Big Data</subject><subject>Classification</subject><subject>Clustering</subject><subject>Data analysis</subject><subject>Data collection</subject><subject>Data mining</subject><subject>Data transmission</subject><subject>Datasets</subject><subject>Decision analysis</subject><subject>Experimentation</subject><subject>Literature reviews</subject><subject>Optimization</subject><subject>Queries</subject><subject>Research methodology</subject><subject>Sensors</subject><subject>Social networks</subject><subject>Structural hierarchy</subject><subject>Traffic flow</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNplkEtLAzEUhYMoWLR_wFXA9di8Zpospy9bqLiwXQ_pJKkp02RMUqX_3khdCN7NvYvzXc45ADxg9ESpQCPd6TYF72wbOcaYUnwFBgSNRSGIINd_7lswjPGA8ghMOUUD8Fk7ODfGtla7BKVTcOvsx0nDzWK0mi1g3e19sOn9aFv44pXuiomMWsGZTBLWTnbnaCM0PsBlhjvr9rDu-862MlnvIvzKLJzY_QV4S0HLYxbdgxsju6iHv_sObBfzzXRZrF-fV9N6XbQUi1SUY6x4Niu0EhLlYKiSiux2tDRE6h2rTCUpU4wqgk2lxlyqklPGdcUMLxmld-Dx8rcPPqeKqTn4U8i2Y0NKxhkhFeNZRS6qNvgYgzZNH-xRhnODUfNTcfO_YvoNvMRxOg</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Iwendi, Celestine</creator><creator>Ponnan, Suresh</creator><creator>Munirathinam, Revathi</creator><creator>Srinivasan, Kathiravan</creator><creator>Chang, Chuan-Yu</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-9476-8130</orcidid><orcidid>https://orcid.org/0000-0003-4350-3911</orcidid><orcidid>https://orcid.org/0000-0002-0488-972X</orcidid><orcidid>https://orcid.org/0000-0002-9352-0237</orcidid></search><sort><creationdate>20191101</creationdate><title>An Efficient and Unique TF/IDF Algorithmic Model-Based Data Analysis for Handling Applications with Big Data Streaming</title><author>Iwendi, Celestine ; Ponnan, Suresh ; Munirathinam, Revathi ; Srinivasan, Kathiravan ; Chang, Chuan-Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-571d80099ed9a033106ad2bb35f2aeb46f6a34d43d21f6d78ad58348e64f85433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Big Data</topic><topic>Classification</topic><topic>Clustering</topic><topic>Data analysis</topic><topic>Data collection</topic><topic>Data mining</topic><topic>Data transmission</topic><topic>Datasets</topic><topic>Decision analysis</topic><topic>Experimentation</topic><topic>Literature reviews</topic><topic>Optimization</topic><topic>Queries</topic><topic>Research methodology</topic><topic>Sensors</topic><topic>Social networks</topic><topic>Structural hierarchy</topic><topic>Traffic flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iwendi, Celestine</creatorcontrib><creatorcontrib>Ponnan, Suresh</creatorcontrib><creatorcontrib>Munirathinam, Revathi</creatorcontrib><creatorcontrib>Srinivasan, Kathiravan</creatorcontrib><creatorcontrib>Chang, Chuan-Yu</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iwendi, Celestine</au><au>Ponnan, Suresh</au><au>Munirathinam, Revathi</au><au>Srinivasan, Kathiravan</au><au>Chang, Chuan-Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient and Unique TF/IDF Algorithmic Model-Based Data Analysis for Handling Applications with Big Data Streaming</atitle><jtitle>Electronics (Basel)</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>8</volume><issue>11</issue><spage>1331</spage><pages>1331-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>As the field of data science grows, document analytics has become a more challenging task for rough classification, response analysis, and text summarization. These tasks are used for the analysis of text data from various intelligent sensing systems. The conventional approach for data analytics and text processing is not useful for big data coming from intelligent systems. This work proposes a novel TF/IDF algorithm with the temporal Louvain approach to solve the above problem. Such an approach is supposed to help the categorization of documents into hierarchical structures showing the relationship between variables, which is a boon to analysts making essential decisions. This paper used public corpora, such as Reuters-21578 and 20 Newsgroups for massive-data analytic experimentation. The result shows the efficacy of the proposed algorithm in terms of accuracy and execution time across six datasets. The proposed approach is validated to bring value to big text data analysis. Big data handling with map-reduce has led to tremendous growth and support for tasks like categorization, sentiment analysis, and higher-quality accuracy from the input data. Outperforming the state-of-the-art approach in terms of accuracy and execution time for six datasets ensures proper validation.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics8111331</doi><orcidid>https://orcid.org/0000-0001-9476-8130</orcidid><orcidid>https://orcid.org/0000-0003-4350-3911</orcidid><orcidid>https://orcid.org/0000-0002-0488-972X</orcidid><orcidid>https://orcid.org/0000-0002-9352-0237</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2019-11, Vol.8 (11), p.1331 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2548422648 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Algorithms Big Data Classification Clustering Data analysis Data collection Data mining Data transmission Datasets Decision analysis Experimentation Literature reviews Optimization Queries Research methodology Sensors Social networks Structural hierarchy Traffic flow |
title | An Efficient and Unique TF/IDF Algorithmic Model-Based Data Analysis for Handling Applications with Big Data Streaming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A59%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20and%20Unique%20TF/IDF%20Algorithmic%20Model-Based%20Data%20Analysis%20for%20Handling%20Applications%20with%20Big%20Data%20Streaming&rft.jtitle=Electronics%20(Basel)&rft.au=Iwendi,%20Celestine&rft.date=2019-11-01&rft.volume=8&rft.issue=11&rft.spage=1331&rft.pages=1331-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics8111331&rft_dat=%3Cproquest_cross%3E2548422648%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548422648&rft_id=info:pmid/&rfr_iscdi=true |