Application of Histogram-Based Outlier Scores to Detect Computer Network Anomalies
Misuse activity in computer networks constantly creates new challenges and difficulties to ensure data confidentiality, integrity, and availability. The capability to identify and quickly stop the attacks is essential, as the undetected and successful attack may cause losses of critical resources. T...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2019-11, Vol.8 (11), p.1251 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 1251 |
container_title | Electronics (Basel) |
container_volume | 8 |
creator | Paulauskas, Nerijus Baskys, Algirdas |
description | Misuse activity in computer networks constantly creates new challenges and difficulties to ensure data confidentiality, integrity, and availability. The capability to identify and quickly stop the attacks is essential, as the undetected and successful attack may cause losses of critical resources. The anomaly-based intrusion detection system (IDS) is a valuable security tool that is capable of detecting new, previously unseen attacks. Anomaly-based IDS sends an alarm when it detects an event that deviates from the behavior characterized as normal. This paper analyses the use of the histogram-based outlier score (HBOS) to detect anomalies in the computer network. Experimental results of different histogram creation methods and the influence of the number of bins on the performance of anomaly detection are presented. Experiments were conducted using an NSL-KDD dataset. |
doi_str_mv | 10.3390/electronics8111251 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548422189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548422189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-984171b703d9cd2abd92c72f287e565016ce4b353f45faf9ccbdbbeb1ae0996e3</originalsourceid><addsrcrecordid>eNplkEtLxDAUhYMoOIzzB1wFXFfz6Osu6_gYYXDAx7ok6Y10bJuapIj_3sq4EDybe-B83AOHkHPOLqUEdoUdmujd0JpQcs5Fxo_IQrACEhAgjv_4U7IKYc9mAZelZAvyVI1j1xoVWzdQZ-mmDdG9edUn1ypgQ3dT7Fr09Nk4j4FGR28wznV07fpxinPyiPHT-XdaDa5XMxvOyIlVXcDV712S17vbl_Um2e7uH9bVNjGSQ0ygTHnBdcFkA6YRSjcgTCGsKAvM8ozx3GCqZSZtmlllwRjdaI2aK2QAOcoluTj8Hb37mDDEeu8mP8yVtcjSMhWClzBT4kAZ70LwaOvRt73yXzVn9c989f_55DekGGbq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548422189</pqid></control><display><type>article</type><title>Application of Histogram-Based Outlier Scores to Detect Computer Network Anomalies</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Paulauskas, Nerijus ; Baskys, Algirdas</creator><creatorcontrib>Paulauskas, Nerijus ; Baskys, Algirdas</creatorcontrib><description>Misuse activity in computer networks constantly creates new challenges and difficulties to ensure data confidentiality, integrity, and availability. The capability to identify and quickly stop the attacks is essential, as the undetected and successful attack may cause losses of critical resources. The anomaly-based intrusion detection system (IDS) is a valuable security tool that is capable of detecting new, previously unseen attacks. Anomaly-based IDS sends an alarm when it detects an event that deviates from the behavior characterized as normal. This paper analyses the use of the histogram-based outlier score (HBOS) to detect anomalies in the computer network. Experimental results of different histogram creation methods and the influence of the number of bins on the performance of anomaly detection are presented. Experiments were conducted using an NSL-KDD dataset.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics8111251</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Anomalies ; Clustering ; Computer networks ; Data analysis ; Datasets ; Histograms ; Information systems ; Intrusion detection systems ; Outliers (statistics)</subject><ispartof>Electronics (Basel), 2019-11, Vol.8 (11), p.1251</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-984171b703d9cd2abd92c72f287e565016ce4b353f45faf9ccbdbbeb1ae0996e3</citedby><cites>FETCH-LOGICAL-c319t-984171b703d9cd2abd92c72f287e565016ce4b353f45faf9ccbdbbeb1ae0996e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Paulauskas, Nerijus</creatorcontrib><creatorcontrib>Baskys, Algirdas</creatorcontrib><title>Application of Histogram-Based Outlier Scores to Detect Computer Network Anomalies</title><title>Electronics (Basel)</title><description>Misuse activity in computer networks constantly creates new challenges and difficulties to ensure data confidentiality, integrity, and availability. The capability to identify and quickly stop the attacks is essential, as the undetected and successful attack may cause losses of critical resources. The anomaly-based intrusion detection system (IDS) is a valuable security tool that is capable of detecting new, previously unseen attacks. Anomaly-based IDS sends an alarm when it detects an event that deviates from the behavior characterized as normal. This paper analyses the use of the histogram-based outlier score (HBOS) to detect anomalies in the computer network. Experimental results of different histogram creation methods and the influence of the number of bins on the performance of anomaly detection are presented. Experiments were conducted using an NSL-KDD dataset.</description><subject>Algorithms</subject><subject>Anomalies</subject><subject>Clustering</subject><subject>Computer networks</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Histograms</subject><subject>Information systems</subject><subject>Intrusion detection systems</subject><subject>Outliers (statistics)</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNplkEtLxDAUhYMoOIzzB1wFXFfz6Osu6_gYYXDAx7ok6Y10bJuapIj_3sq4EDybe-B83AOHkHPOLqUEdoUdmujd0JpQcs5Fxo_IQrACEhAgjv_4U7IKYc9mAZelZAvyVI1j1xoVWzdQZ-mmDdG9edUn1ypgQ3dT7Fr09Nk4j4FGR28wznV07fpxinPyiPHT-XdaDa5XMxvOyIlVXcDV712S17vbl_Um2e7uH9bVNjGSQ0ygTHnBdcFkA6YRSjcgTCGsKAvM8ozx3GCqZSZtmlllwRjdaI2aK2QAOcoluTj8Hb37mDDEeu8mP8yVtcjSMhWClzBT4kAZ70LwaOvRt73yXzVn9c989f_55DekGGbq</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Paulauskas, Nerijus</creator><creator>Baskys, Algirdas</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20191101</creationdate><title>Application of Histogram-Based Outlier Scores to Detect Computer Network Anomalies</title><author>Paulauskas, Nerijus ; Baskys, Algirdas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-984171b703d9cd2abd92c72f287e565016ce4b353f45faf9ccbdbbeb1ae0996e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Anomalies</topic><topic>Clustering</topic><topic>Computer networks</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Histograms</topic><topic>Information systems</topic><topic>Intrusion detection systems</topic><topic>Outliers (statistics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paulauskas, Nerijus</creatorcontrib><creatorcontrib>Baskys, Algirdas</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paulauskas, Nerijus</au><au>Baskys, Algirdas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Histogram-Based Outlier Scores to Detect Computer Network Anomalies</atitle><jtitle>Electronics (Basel)</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>8</volume><issue>11</issue><spage>1251</spage><pages>1251-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Misuse activity in computer networks constantly creates new challenges and difficulties to ensure data confidentiality, integrity, and availability. The capability to identify and quickly stop the attacks is essential, as the undetected and successful attack may cause losses of critical resources. The anomaly-based intrusion detection system (IDS) is a valuable security tool that is capable of detecting new, previously unseen attacks. Anomaly-based IDS sends an alarm when it detects an event that deviates from the behavior characterized as normal. This paper analyses the use of the histogram-based outlier score (HBOS) to detect anomalies in the computer network. Experimental results of different histogram creation methods and the influence of the number of bins on the performance of anomaly detection are presented. Experiments were conducted using an NSL-KDD dataset.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics8111251</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2019-11, Vol.8 (11), p.1251 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2548422189 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Anomalies Clustering Computer networks Data analysis Datasets Histograms Information systems Intrusion detection systems Outliers (statistics) |
title | Application of Histogram-Based Outlier Scores to Detect Computer Network Anomalies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T10%3A37%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Histogram-Based%20Outlier%20Scores%20to%20Detect%20Computer%20Network%20Anomalies&rft.jtitle=Electronics%20(Basel)&rft.au=Paulauskas,%20Nerijus&rft.date=2019-11-01&rft.volume=8&rft.issue=11&rft.spage=1251&rft.pages=1251-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics8111251&rft_dat=%3Cproquest_cross%3E2548422189%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548422189&rft_id=info:pmid/&rfr_iscdi=true |