Application of Histogram-Based Outlier Scores to Detect Computer Network Anomalies

Misuse activity in computer networks constantly creates new challenges and difficulties to ensure data confidentiality, integrity, and availability. The capability to identify and quickly stop the attacks is essential, as the undetected and successful attack may cause losses of critical resources. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2019-11, Vol.8 (11), p.1251
Hauptverfasser: Paulauskas, Nerijus, Baskys, Algirdas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 1251
container_title Electronics (Basel)
container_volume 8
creator Paulauskas, Nerijus
Baskys, Algirdas
description Misuse activity in computer networks constantly creates new challenges and difficulties to ensure data confidentiality, integrity, and availability. The capability to identify and quickly stop the attacks is essential, as the undetected and successful attack may cause losses of critical resources. The anomaly-based intrusion detection system (IDS) is a valuable security tool that is capable of detecting new, previously unseen attacks. Anomaly-based IDS sends an alarm when it detects an event that deviates from the behavior characterized as normal. This paper analyses the use of the histogram-based outlier score (HBOS) to detect anomalies in the computer network. Experimental results of different histogram creation methods and the influence of the number of bins on the performance of anomaly detection are presented. Experiments were conducted using an NSL-KDD dataset.
doi_str_mv 10.3390/electronics8111251
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548422189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548422189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-984171b703d9cd2abd92c72f287e565016ce4b353f45faf9ccbdbbeb1ae0996e3</originalsourceid><addsrcrecordid>eNplkEtLxDAUhYMoOIzzB1wFXFfz6Osu6_gYYXDAx7ok6Y10bJuapIj_3sq4EDybe-B83AOHkHPOLqUEdoUdmujd0JpQcs5Fxo_IQrACEhAgjv_4U7IKYc9mAZelZAvyVI1j1xoVWzdQZ-mmDdG9edUn1ypgQ3dT7Fr09Nk4j4FGR28wznV07fpxinPyiPHT-XdaDa5XMxvOyIlVXcDV712S17vbl_Um2e7uH9bVNjGSQ0ygTHnBdcFkA6YRSjcgTCGsKAvM8ozx3GCqZSZtmlllwRjdaI2aK2QAOcoluTj8Hb37mDDEeu8mP8yVtcjSMhWClzBT4kAZ70LwaOvRt73yXzVn9c989f_55DekGGbq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548422189</pqid></control><display><type>article</type><title>Application of Histogram-Based Outlier Scores to Detect Computer Network Anomalies</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Paulauskas, Nerijus ; Baskys, Algirdas</creator><creatorcontrib>Paulauskas, Nerijus ; Baskys, Algirdas</creatorcontrib><description>Misuse activity in computer networks constantly creates new challenges and difficulties to ensure data confidentiality, integrity, and availability. The capability to identify and quickly stop the attacks is essential, as the undetected and successful attack may cause losses of critical resources. The anomaly-based intrusion detection system (IDS) is a valuable security tool that is capable of detecting new, previously unseen attacks. Anomaly-based IDS sends an alarm when it detects an event that deviates from the behavior characterized as normal. This paper analyses the use of the histogram-based outlier score (HBOS) to detect anomalies in the computer network. Experimental results of different histogram creation methods and the influence of the number of bins on the performance of anomaly detection are presented. Experiments were conducted using an NSL-KDD dataset.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics8111251</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Anomalies ; Clustering ; Computer networks ; Data analysis ; Datasets ; Histograms ; Information systems ; Intrusion detection systems ; Outliers (statistics)</subject><ispartof>Electronics (Basel), 2019-11, Vol.8 (11), p.1251</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-984171b703d9cd2abd92c72f287e565016ce4b353f45faf9ccbdbbeb1ae0996e3</citedby><cites>FETCH-LOGICAL-c319t-984171b703d9cd2abd92c72f287e565016ce4b353f45faf9ccbdbbeb1ae0996e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Paulauskas, Nerijus</creatorcontrib><creatorcontrib>Baskys, Algirdas</creatorcontrib><title>Application of Histogram-Based Outlier Scores to Detect Computer Network Anomalies</title><title>Electronics (Basel)</title><description>Misuse activity in computer networks constantly creates new challenges and difficulties to ensure data confidentiality, integrity, and availability. The capability to identify and quickly stop the attacks is essential, as the undetected and successful attack may cause losses of critical resources. The anomaly-based intrusion detection system (IDS) is a valuable security tool that is capable of detecting new, previously unseen attacks. Anomaly-based IDS sends an alarm when it detects an event that deviates from the behavior characterized as normal. This paper analyses the use of the histogram-based outlier score (HBOS) to detect anomalies in the computer network. Experimental results of different histogram creation methods and the influence of the number of bins on the performance of anomaly detection are presented. Experiments were conducted using an NSL-KDD dataset.</description><subject>Algorithms</subject><subject>Anomalies</subject><subject>Clustering</subject><subject>Computer networks</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Histograms</subject><subject>Information systems</subject><subject>Intrusion detection systems</subject><subject>Outliers (statistics)</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNplkEtLxDAUhYMoOIzzB1wFXFfz6Osu6_gYYXDAx7ok6Y10bJuapIj_3sq4EDybe-B83AOHkHPOLqUEdoUdmujd0JpQcs5Fxo_IQrACEhAgjv_4U7IKYc9mAZelZAvyVI1j1xoVWzdQZ-mmDdG9edUn1ypgQ3dT7Fr09Nk4j4FGR28wznV07fpxinPyiPHT-XdaDa5XMxvOyIlVXcDV712S17vbl_Um2e7uH9bVNjGSQ0ygTHnBdcFkA6YRSjcgTCGsKAvM8ozx3GCqZSZtmlllwRjdaI2aK2QAOcoluTj8Hb37mDDEeu8mP8yVtcjSMhWClzBT4kAZ70LwaOvRt73yXzVn9c989f_55DekGGbq</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Paulauskas, Nerijus</creator><creator>Baskys, Algirdas</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20191101</creationdate><title>Application of Histogram-Based Outlier Scores to Detect Computer Network Anomalies</title><author>Paulauskas, Nerijus ; Baskys, Algirdas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-984171b703d9cd2abd92c72f287e565016ce4b353f45faf9ccbdbbeb1ae0996e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Anomalies</topic><topic>Clustering</topic><topic>Computer networks</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Histograms</topic><topic>Information systems</topic><topic>Intrusion detection systems</topic><topic>Outliers (statistics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paulauskas, Nerijus</creatorcontrib><creatorcontrib>Baskys, Algirdas</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paulauskas, Nerijus</au><au>Baskys, Algirdas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Histogram-Based Outlier Scores to Detect Computer Network Anomalies</atitle><jtitle>Electronics (Basel)</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>8</volume><issue>11</issue><spage>1251</spage><pages>1251-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Misuse activity in computer networks constantly creates new challenges and difficulties to ensure data confidentiality, integrity, and availability. The capability to identify and quickly stop the attacks is essential, as the undetected and successful attack may cause losses of critical resources. The anomaly-based intrusion detection system (IDS) is a valuable security tool that is capable of detecting new, previously unseen attacks. Anomaly-based IDS sends an alarm when it detects an event that deviates from the behavior characterized as normal. This paper analyses the use of the histogram-based outlier score (HBOS) to detect anomalies in the computer network. Experimental results of different histogram creation methods and the influence of the number of bins on the performance of anomaly detection are presented. Experiments were conducted using an NSL-KDD dataset.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics8111251</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2019-11, Vol.8 (11), p.1251
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2548422189
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Anomalies
Clustering
Computer networks
Data analysis
Datasets
Histograms
Information systems
Intrusion detection systems
Outliers (statistics)
title Application of Histogram-Based Outlier Scores to Detect Computer Network Anomalies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T10%3A37%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Histogram-Based%20Outlier%20Scores%20to%20Detect%20Computer%20Network%20Anomalies&rft.jtitle=Electronics%20(Basel)&rft.au=Paulauskas,%20Nerijus&rft.date=2019-11-01&rft.volume=8&rft.issue=11&rft.spage=1251&rft.pages=1251-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics8111251&rft_dat=%3Cproquest_cross%3E2548422189%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548422189&rft_id=info:pmid/&rfr_iscdi=true