Wavelet-Integrated Deep Networks for Single Image Super-Resolution

We propose a scale-invariant deep neural network model based on wavelets for single image super-resolution (SISR). The wavelet approximation images and their corresponding wavelet sub-bands across all predefined scale factors are combined to form a big training data set. Then, mappings are determine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2019-05, Vol.8 (5), p.553
Hauptverfasser: Sahito, Faisal, Zhiwen, Pan, Ahmed, Junaid, Memon, Raheel Ahmed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 553
container_title Electronics (Basel)
container_volume 8
creator Sahito, Faisal
Zhiwen, Pan
Ahmed, Junaid
Memon, Raheel Ahmed
description We propose a scale-invariant deep neural network model based on wavelets for single image super-resolution (SISR). The wavelet approximation images and their corresponding wavelet sub-bands across all predefined scale factors are combined to form a big training data set. Then, mappings are determined between the wavelet sub-band images and their corresponding approximation images. Finally, the gradient clipping process is used to boost the training speed of the algorithm. Furthermore, stationary wavelet transform (SWT) is used instead of a discrete wavelet transform (DWT), due to its up-scaling property. In this way, we can preserve more information about the images. In the proposed model, the high-resolution image is recovered with detailed features, due to redundancy (across the scale) property of wavelets. Experimental results show that the proposed model outperforms state-of-the algorithms in terms of peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM).
doi_str_mv 10.3390/electronics8050553
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548421271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548421271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-df985cdbb005968168439f0eb18eac45afc72bce067951cff0c02704f719d0db3</originalsourceid><addsrcrecordid>eNplUEtLxDAYDKLgsu4f8FTwXP2SNG1y1PW1sCi4iseSpl9K125Tk1Tx31tZD4JzmTnMA4aQUwrnnCu4wA5N9K5vTZAgQAh-QGYMCpUqptjhH31MFiFsYYKiXHKYkatX_THlY7rqIzZeR6yTa8QhecD46fxbSKzzyabtmw6T1U43mGzGAX36hMF1Y2xdf0KOrO4CLn55Tl5ub56X9-n68W61vFynhlMV09oqKUxdVQBC5ZLmMuPKAlZUojaZ0NYUrDIIeaEENdaCAVZAZguqaqgrPidn-97Bu_cRQyy3bvT9NFkykcmMUVbQycX2LuNdCB5tOfh2p_1XSaH8uav8fxf_BmFJYJs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548421271</pqid></control><display><type>article</type><title>Wavelet-Integrated Deep Networks for Single Image Super-Resolution</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Sahito, Faisal ; Zhiwen, Pan ; Ahmed, Junaid ; Memon, Raheel Ahmed</creator><creatorcontrib>Sahito, Faisal ; Zhiwen, Pan ; Ahmed, Junaid ; Memon, Raheel Ahmed</creatorcontrib><description>We propose a scale-invariant deep neural network model based on wavelets for single image super-resolution (SISR). The wavelet approximation images and their corresponding wavelet sub-bands across all predefined scale factors are combined to form a big training data set. Then, mappings are determined between the wavelet sub-band images and their corresponding approximation images. Finally, the gradient clipping process is used to boost the training speed of the algorithm. Furthermore, stationary wavelet transform (SWT) is used instead of a discrete wavelet transform (DWT), due to its up-scaling property. In this way, we can preserve more information about the images. In the proposed model, the high-resolution image is recovered with detailed features, due to redundancy (across the scale) property of wavelets. Experimental results show that the proposed model outperforms state-of-the algorithms in terms of peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM).</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics8050553</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Approximation ; Artificial neural networks ; Decomposition ; Deep learning ; Dictionaries ; Discrete Wavelet Transform ; HDTV ; High definition television ; Image resolution ; Mathematical analysis ; Neural networks ; Pattern recognition ; Principal components analysis ; Redundancy ; Signal to noise ratio ; Sparsity ; Training ; Wavelet transforms</subject><ispartof>Electronics (Basel), 2019-05, Vol.8 (5), p.553</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-df985cdbb005968168439f0eb18eac45afc72bce067951cff0c02704f719d0db3</citedby><cites>FETCH-LOGICAL-c319t-df985cdbb005968168439f0eb18eac45afc72bce067951cff0c02704f719d0db3</cites><orcidid>0000-0003-1206-3837</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sahito, Faisal</creatorcontrib><creatorcontrib>Zhiwen, Pan</creatorcontrib><creatorcontrib>Ahmed, Junaid</creatorcontrib><creatorcontrib>Memon, Raheel Ahmed</creatorcontrib><title>Wavelet-Integrated Deep Networks for Single Image Super-Resolution</title><title>Electronics (Basel)</title><description>We propose a scale-invariant deep neural network model based on wavelets for single image super-resolution (SISR). The wavelet approximation images and their corresponding wavelet sub-bands across all predefined scale factors are combined to form a big training data set. Then, mappings are determined between the wavelet sub-band images and their corresponding approximation images. Finally, the gradient clipping process is used to boost the training speed of the algorithm. Furthermore, stationary wavelet transform (SWT) is used instead of a discrete wavelet transform (DWT), due to its up-scaling property. In this way, we can preserve more information about the images. In the proposed model, the high-resolution image is recovered with detailed features, due to redundancy (across the scale) property of wavelets. Experimental results show that the proposed model outperforms state-of-the algorithms in terms of peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM).</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Artificial neural networks</subject><subject>Decomposition</subject><subject>Deep learning</subject><subject>Dictionaries</subject><subject>Discrete Wavelet Transform</subject><subject>HDTV</subject><subject>High definition television</subject><subject>Image resolution</subject><subject>Mathematical analysis</subject><subject>Neural networks</subject><subject>Pattern recognition</subject><subject>Principal components analysis</subject><subject>Redundancy</subject><subject>Signal to noise ratio</subject><subject>Sparsity</subject><subject>Training</subject><subject>Wavelet transforms</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNplUEtLxDAYDKLgsu4f8FTwXP2SNG1y1PW1sCi4iseSpl9K125Tk1Tx31tZD4JzmTnMA4aQUwrnnCu4wA5N9K5vTZAgQAh-QGYMCpUqptjhH31MFiFsYYKiXHKYkatX_THlY7rqIzZeR6yTa8QhecD46fxbSKzzyabtmw6T1U43mGzGAX36hMF1Y2xdf0KOrO4CLn55Tl5ub56X9-n68W61vFynhlMV09oqKUxdVQBC5ZLmMuPKAlZUojaZ0NYUrDIIeaEENdaCAVZAZguqaqgrPidn-97Bu_cRQyy3bvT9NFkykcmMUVbQycX2LuNdCB5tOfh2p_1XSaH8uav8fxf_BmFJYJs</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Sahito, Faisal</creator><creator>Zhiwen, Pan</creator><creator>Ahmed, Junaid</creator><creator>Memon, Raheel Ahmed</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-1206-3837</orcidid></search><sort><creationdate>20190501</creationdate><title>Wavelet-Integrated Deep Networks for Single Image Super-Resolution</title><author>Sahito, Faisal ; Zhiwen, Pan ; Ahmed, Junaid ; Memon, Raheel Ahmed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-df985cdbb005968168439f0eb18eac45afc72bce067951cff0c02704f719d0db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Artificial neural networks</topic><topic>Decomposition</topic><topic>Deep learning</topic><topic>Dictionaries</topic><topic>Discrete Wavelet Transform</topic><topic>HDTV</topic><topic>High definition television</topic><topic>Image resolution</topic><topic>Mathematical analysis</topic><topic>Neural networks</topic><topic>Pattern recognition</topic><topic>Principal components analysis</topic><topic>Redundancy</topic><topic>Signal to noise ratio</topic><topic>Sparsity</topic><topic>Training</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sahito, Faisal</creatorcontrib><creatorcontrib>Zhiwen, Pan</creatorcontrib><creatorcontrib>Ahmed, Junaid</creatorcontrib><creatorcontrib>Memon, Raheel Ahmed</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahito, Faisal</au><au>Zhiwen, Pan</au><au>Ahmed, Junaid</au><au>Memon, Raheel Ahmed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wavelet-Integrated Deep Networks for Single Image Super-Resolution</atitle><jtitle>Electronics (Basel)</jtitle><date>2019-05-01</date><risdate>2019</risdate><volume>8</volume><issue>5</issue><spage>553</spage><pages>553-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>We propose a scale-invariant deep neural network model based on wavelets for single image super-resolution (SISR). The wavelet approximation images and their corresponding wavelet sub-bands across all predefined scale factors are combined to form a big training data set. Then, mappings are determined between the wavelet sub-band images and their corresponding approximation images. Finally, the gradient clipping process is used to boost the training speed of the algorithm. Furthermore, stationary wavelet transform (SWT) is used instead of a discrete wavelet transform (DWT), due to its up-scaling property. In this way, we can preserve more information about the images. In the proposed model, the high-resolution image is recovered with detailed features, due to redundancy (across the scale) property of wavelets. Experimental results show that the proposed model outperforms state-of-the algorithms in terms of peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM).</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics8050553</doi><orcidid>https://orcid.org/0000-0003-1206-3837</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2019-05, Vol.8 (5), p.553
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2548421271
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Algorithms
Approximation
Artificial neural networks
Decomposition
Deep learning
Dictionaries
Discrete Wavelet Transform
HDTV
High definition television
Image resolution
Mathematical analysis
Neural networks
Pattern recognition
Principal components analysis
Redundancy
Signal to noise ratio
Sparsity
Training
Wavelet transforms
title Wavelet-Integrated Deep Networks for Single Image Super-Resolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A15%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wavelet-Integrated%20Deep%20Networks%20for%20Single%20Image%20Super-Resolution&rft.jtitle=Electronics%20(Basel)&rft.au=Sahito,%20Faisal&rft.date=2019-05-01&rft.volume=8&rft.issue=5&rft.spage=553&rft.pages=553-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics8050553&rft_dat=%3Cproquest_cross%3E2548421271%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548421271&rft_id=info:pmid/&rfr_iscdi=true