An Efficient Hardware Accelerator for the MUSIC Algorithm
As a classical DOA (direction of arrival) estimation algorithm, the multiple signal classification (MUSIC) algorithm can estimate the direction of signal incidence. A major bottleneck in the application of this algorithm is the large computation amount, so accelerating the algorithm to meet the requ...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2019-05, Vol.8 (5), p.511 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 511 |
container_title | Electronics (Basel) |
container_volume | 8 |
creator | Chen, Hui Chen, Kai Cheng, Kaifeng Chen, Qinyu Fu, Yuxiang Li, Li |
description | As a classical DOA (direction of arrival) estimation algorithm, the multiple signal classification (MUSIC) algorithm can estimate the direction of signal incidence. A major bottleneck in the application of this algorithm is the large computation amount, so accelerating the algorithm to meet the requirements of high real-time and high precision is the focus. In this paper, we design an efficient and reconfigurable accelerator to implement the MUSIC algorithm. Initially, we propose a hardware-friendly MUSIC algorithm without the eigenstructure decomposition of the covariance matrix, which is time consuming and accounts for about 60% of the whole computation. Furthermore, to reduce the computation of the covariance matrix, this paper utilizes the conjugate symmetry property of it and the way of iterative storage, which can also lessen memory access time. Finally, we adopt the stepwise search method to realize the spectral peak search, which can meet the requirements of 1° and 0.1° precision. The accelerator can operate at a maximum frequency of 1 GHz with a 4,765,475.4 μm2 area, and the power dissipation is 238.27 mW after the gate-level synthesis under the TSMC 40-nm CMOS technology with the Synopsys Design Compiler. Our implementation can accelerate the algorithm to meet the high real-time and high precision requirements in applications. Assuming that the case is an eight-element uniform linear array, a single signal source, and 128 snapshots, the computation times of the algorithm in our architecture are 2.8 μs and 22.7 μs for covariance matrix estimation and spectral peak search, respectively. |
doi_str_mv | 10.3390/electronics8050511 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548421030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548421030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f64a3930a23a12a8a7d1ee140a4a08311db468059f047c73e5106d4e9ebd189b3</originalsourceid><addsrcrecordid>eNplkEFLw0AQhRdRsNT-AU8Bz9GZnU2TPYZQbaHiQXsO282sTUmTurtF_PdG6kFw4DHv8PFmeELcItwTaXjgjm30Q9_aUEAGGeKFmEjIdaqllpd__LWYhbCHcTRSQTARuuyThXOtbbmPydL45tN4Tkprx1Rv4uATNyruOHnevK6qpOzeB9_G3eFGXDnTBZ797qnYPC7eqmW6fnlaVeU6tYQ6pm6uDGkCI8mgNIXJG2RGBUYZKAix2ar5-LZ2oHKbE2cI80ax5m2Dhd7SVNydc49--DhxiPV-OPl-PFnLTBVKIhCMlDxT1g8heHb10bcH479qhPqnpfp_S_QNLv5bYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548421030</pqid></control><display><type>article</type><title>An Efficient Hardware Accelerator for the MUSIC Algorithm</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chen, Hui ; Chen, Kai ; Cheng, Kaifeng ; Chen, Qinyu ; Fu, Yuxiang ; Li, Li</creator><creatorcontrib>Chen, Hui ; Chen, Kai ; Cheng, Kaifeng ; Chen, Qinyu ; Fu, Yuxiang ; Li, Li</creatorcontrib><description>As a classical DOA (direction of arrival) estimation algorithm, the multiple signal classification (MUSIC) algorithm can estimate the direction of signal incidence. A major bottleneck in the application of this algorithm is the large computation amount, so accelerating the algorithm to meet the requirements of high real-time and high precision is the focus. In this paper, we design an efficient and reconfigurable accelerator to implement the MUSIC algorithm. Initially, we propose a hardware-friendly MUSIC algorithm without the eigenstructure decomposition of the covariance matrix, which is time consuming and accounts for about 60% of the whole computation. Furthermore, to reduce the computation of the covariance matrix, this paper utilizes the conjugate symmetry property of it and the way of iterative storage, which can also lessen memory access time. Finally, we adopt the stepwise search method to realize the spectral peak search, which can meet the requirements of 1° and 0.1° precision. The accelerator can operate at a maximum frequency of 1 GHz with a 4,765,475.4 μm2 area, and the power dissipation is 238.27 mW after the gate-level synthesis under the TSMC 40-nm CMOS technology with the Synopsys Design Compiler. Our implementation can accelerate the algorithm to meet the high real-time and high precision requirements in applications. Assuming that the case is an eight-element uniform linear array, a single signal source, and 128 snapshots, the computation times of the algorithm in our architecture are 2.8 μs and 22.7 μs for covariance matrix estimation and spectral peak search, respectively.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics8050511</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Access time ; Algorithms ; Classical music ; CMOS ; Code Division Multiple Access ; Computation ; Covariance matrix ; Decomposition ; Design ; Direction of arrival ; Eigenvalues ; Hardware ; Iterative methods ; Linear arrays ; Mathematical analysis ; Noise ; Real time ; Search methods ; Signal classification</subject><ispartof>Electronics (Basel), 2019-05, Vol.8 (5), p.511</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f64a3930a23a12a8a7d1ee140a4a08311db468059f047c73e5106d4e9ebd189b3</citedby><cites>FETCH-LOGICAL-c319t-f64a3930a23a12a8a7d1ee140a4a08311db468059f047c73e5106d4e9ebd189b3</cites><orcidid>0000-0001-5462-8029</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Chen, Kai</creatorcontrib><creatorcontrib>Cheng, Kaifeng</creatorcontrib><creatorcontrib>Chen, Qinyu</creatorcontrib><creatorcontrib>Fu, Yuxiang</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><title>An Efficient Hardware Accelerator for the MUSIC Algorithm</title><title>Electronics (Basel)</title><description>As a classical DOA (direction of arrival) estimation algorithm, the multiple signal classification (MUSIC) algorithm can estimate the direction of signal incidence. A major bottleneck in the application of this algorithm is the large computation amount, so accelerating the algorithm to meet the requirements of high real-time and high precision is the focus. In this paper, we design an efficient and reconfigurable accelerator to implement the MUSIC algorithm. Initially, we propose a hardware-friendly MUSIC algorithm without the eigenstructure decomposition of the covariance matrix, which is time consuming and accounts for about 60% of the whole computation. Furthermore, to reduce the computation of the covariance matrix, this paper utilizes the conjugate symmetry property of it and the way of iterative storage, which can also lessen memory access time. Finally, we adopt the stepwise search method to realize the spectral peak search, which can meet the requirements of 1° and 0.1° precision. The accelerator can operate at a maximum frequency of 1 GHz with a 4,765,475.4 μm2 area, and the power dissipation is 238.27 mW after the gate-level synthesis under the TSMC 40-nm CMOS technology with the Synopsys Design Compiler. Our implementation can accelerate the algorithm to meet the high real-time and high precision requirements in applications. Assuming that the case is an eight-element uniform linear array, a single signal source, and 128 snapshots, the computation times of the algorithm in our architecture are 2.8 μs and 22.7 μs for covariance matrix estimation and spectral peak search, respectively.</description><subject>Access time</subject><subject>Algorithms</subject><subject>Classical music</subject><subject>CMOS</subject><subject>Code Division Multiple Access</subject><subject>Computation</subject><subject>Covariance matrix</subject><subject>Decomposition</subject><subject>Design</subject><subject>Direction of arrival</subject><subject>Eigenvalues</subject><subject>Hardware</subject><subject>Iterative methods</subject><subject>Linear arrays</subject><subject>Mathematical analysis</subject><subject>Noise</subject><subject>Real time</subject><subject>Search methods</subject><subject>Signal classification</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNplkEFLw0AQhRdRsNT-AU8Bz9GZnU2TPYZQbaHiQXsO282sTUmTurtF_PdG6kFw4DHv8PFmeELcItwTaXjgjm30Q9_aUEAGGeKFmEjIdaqllpd__LWYhbCHcTRSQTARuuyThXOtbbmPydL45tN4Tkprx1Rv4uATNyruOHnevK6qpOzeB9_G3eFGXDnTBZ797qnYPC7eqmW6fnlaVeU6tYQ6pm6uDGkCI8mgNIXJG2RGBUYZKAix2ar5-LZ2oHKbE2cI80ax5m2Dhd7SVNydc49--DhxiPV-OPl-PFnLTBVKIhCMlDxT1g8heHb10bcH479qhPqnpfp_S_QNLv5bYA</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Chen, Hui</creator><creator>Chen, Kai</creator><creator>Cheng, Kaifeng</creator><creator>Chen, Qinyu</creator><creator>Fu, Yuxiang</creator><creator>Li, Li</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-5462-8029</orcidid></search><sort><creationdate>20190501</creationdate><title>An Efficient Hardware Accelerator for the MUSIC Algorithm</title><author>Chen, Hui ; Chen, Kai ; Cheng, Kaifeng ; Chen, Qinyu ; Fu, Yuxiang ; Li, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f64a3930a23a12a8a7d1ee140a4a08311db468059f047c73e5106d4e9ebd189b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Access time</topic><topic>Algorithms</topic><topic>Classical music</topic><topic>CMOS</topic><topic>Code Division Multiple Access</topic><topic>Computation</topic><topic>Covariance matrix</topic><topic>Decomposition</topic><topic>Design</topic><topic>Direction of arrival</topic><topic>Eigenvalues</topic><topic>Hardware</topic><topic>Iterative methods</topic><topic>Linear arrays</topic><topic>Mathematical analysis</topic><topic>Noise</topic><topic>Real time</topic><topic>Search methods</topic><topic>Signal classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Chen, Kai</creatorcontrib><creatorcontrib>Cheng, Kaifeng</creatorcontrib><creatorcontrib>Chen, Qinyu</creatorcontrib><creatorcontrib>Fu, Yuxiang</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Hui</au><au>Chen, Kai</au><au>Cheng, Kaifeng</au><au>Chen, Qinyu</au><au>Fu, Yuxiang</au><au>Li, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Hardware Accelerator for the MUSIC Algorithm</atitle><jtitle>Electronics (Basel)</jtitle><date>2019-05-01</date><risdate>2019</risdate><volume>8</volume><issue>5</issue><spage>511</spage><pages>511-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>As a classical DOA (direction of arrival) estimation algorithm, the multiple signal classification (MUSIC) algorithm can estimate the direction of signal incidence. A major bottleneck in the application of this algorithm is the large computation amount, so accelerating the algorithm to meet the requirements of high real-time and high precision is the focus. In this paper, we design an efficient and reconfigurable accelerator to implement the MUSIC algorithm. Initially, we propose a hardware-friendly MUSIC algorithm without the eigenstructure decomposition of the covariance matrix, which is time consuming and accounts for about 60% of the whole computation. Furthermore, to reduce the computation of the covariance matrix, this paper utilizes the conjugate symmetry property of it and the way of iterative storage, which can also lessen memory access time. Finally, we adopt the stepwise search method to realize the spectral peak search, which can meet the requirements of 1° and 0.1° precision. The accelerator can operate at a maximum frequency of 1 GHz with a 4,765,475.4 μm2 area, and the power dissipation is 238.27 mW after the gate-level synthesis under the TSMC 40-nm CMOS technology with the Synopsys Design Compiler. Our implementation can accelerate the algorithm to meet the high real-time and high precision requirements in applications. Assuming that the case is an eight-element uniform linear array, a single signal source, and 128 snapshots, the computation times of the algorithm in our architecture are 2.8 μs and 22.7 μs for covariance matrix estimation and spectral peak search, respectively.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics8050511</doi><orcidid>https://orcid.org/0000-0001-5462-8029</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2019-05, Vol.8 (5), p.511 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2548421030 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Access time Algorithms Classical music CMOS Code Division Multiple Access Computation Covariance matrix Decomposition Design Direction of arrival Eigenvalues Hardware Iterative methods Linear arrays Mathematical analysis Noise Real time Search methods Signal classification |
title | An Efficient Hardware Accelerator for the MUSIC Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A27%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Hardware%20Accelerator%20for%20the%20MUSIC%20Algorithm&rft.jtitle=Electronics%20(Basel)&rft.au=Chen,%20Hui&rft.date=2019-05-01&rft.volume=8&rft.issue=5&rft.spage=511&rft.pages=511-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics8050511&rft_dat=%3Cproquest_cross%3E2548421030%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548421030&rft_id=info:pmid/&rfr_iscdi=true |