Intelligent Data Fusion and Multi-Agent Coordination for Target Allocation

This paper addresses the fusion processing techniques for multi-sensor data perceived through the infrared sensors of military surveillance robots, and proposes their decision-theoretic coordination to effectively monitor multiple targets. To combine the multi-sensor data from the distributed battle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2020-10, Vol.9 (10), p.1563
1. Verfasser: Noh, Sanguk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 1563
container_title Electronics (Basel)
container_volume 9
creator Noh, Sanguk
description This paper addresses the fusion processing techniques for multi-sensor data perceived through the infrared sensors of military surveillance robots, and proposes their decision-theoretic coordination to effectively monitor multiple targets. To combine the multi-sensor data from the distributed battlefield robots, a set of fusion rules are used to formulate a combined prediction from the multi-source data. The possible type of a target is estimated through the fusion rules. For the identification of targets, agents need to keep track of targets for continuous situation awareness. The coordination of the agents with limited range of surveillance is indispensable for their successful monitoring of multiple targets. For dynamic and flexible coordination, our agents follow the decision-theoretic approach. We implement a military simulator to compare the capabilities of fusion processing and those of coordination, and conduct experiments with our framework in distributed and uncertain battlefield environments. The experimental results show that the fusion process of multi-sensor data from military robots can improve the performance of estimation of the type of a target, and our coordinated agents outperform agents using random strategy for their target selection in various military scenarios.
doi_str_mv 10.3390/electronics9101563
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548420900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548420900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3d589ffc9d8ed7b268fb392a5ab2c9cb0ec2ff6042f9e2f9225f09fa16918eec3</originalsourceid><addsrcrecordid>eNplUMFKAzEQDaJgqf0BTwueV5PJ7nbnWKrVSsVLPS_Z7KRsiUlNsgf_3m3rQXDgMcO8x3vwGLsV_F5K5A9kSafgXa8jCi7KSl6wCfA55ggIl3_uazaLcc_HQSFrySfsde0SWdvvyKXsUSWVrYbYe5cp12Vvg019vjhxS-9D1zuVjqTxIduqsKOULaz1-vS9YVdG2Uiz3z1lH6un7fIl37w_r5eLTa6lwJTLrqzRGI1dTd28hao2rURQpWpBo245aTCm4gUYpBEApeFolKhQ1ERaTtnd2fcQ_NdAMTV7PwQ3RjZQFnUBHDkfVXBW6eBjDGSaQ-g_VfhuBG-OtTX_a5M_GjBkCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548420900</pqid></control><display><type>article</type><title>Intelligent Data Fusion and Multi-Agent Coordination for Target Allocation</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Noh, Sanguk</creator><creatorcontrib>Noh, Sanguk</creatorcontrib><description>This paper addresses the fusion processing techniques for multi-sensor data perceived through the infrared sensors of military surveillance robots, and proposes their decision-theoretic coordination to effectively monitor multiple targets. To combine the multi-sensor data from the distributed battlefield robots, a set of fusion rules are used to formulate a combined prediction from the multi-source data. The possible type of a target is estimated through the fusion rules. For the identification of targets, agents need to keep track of targets for continuous situation awareness. The coordination of the agents with limited range of surveillance is indispensable for their successful monitoring of multiple targets. For dynamic and flexible coordination, our agents follow the decision-theoretic approach. We implement a military simulator to compare the capabilities of fusion processing and those of coordination, and conduct experiments with our framework in distributed and uncertain battlefield environments. The experimental results show that the fusion process of multi-sensor data from military robots can improve the performance of estimation of the type of a target, and our coordinated agents outperform agents using random strategy for their target selection in various military scenarios.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics9101563</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Battlefields ; Coordination ; Data integration ; Decision theory ; Infrared detectors ; Multiagent systems ; Multisensor fusion ; Robots ; Sensors ; Simulation ; Situational awareness ; Surveillance ; Target recognition ; Tracking ; Vehicles</subject><ispartof>Electronics (Basel), 2020-10, Vol.9 (10), p.1563</ispartof><rights>2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3d589ffc9d8ed7b268fb392a5ab2c9cb0ec2ff6042f9e2f9225f09fa16918eec3</citedby><cites>FETCH-LOGICAL-c319t-3d589ffc9d8ed7b268fb392a5ab2c9cb0ec2ff6042f9e2f9225f09fa16918eec3</cites><orcidid>0000-0001-5072-5032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Noh, Sanguk</creatorcontrib><title>Intelligent Data Fusion and Multi-Agent Coordination for Target Allocation</title><title>Electronics (Basel)</title><description>This paper addresses the fusion processing techniques for multi-sensor data perceived through the infrared sensors of military surveillance robots, and proposes their decision-theoretic coordination to effectively monitor multiple targets. To combine the multi-sensor data from the distributed battlefield robots, a set of fusion rules are used to formulate a combined prediction from the multi-source data. The possible type of a target is estimated through the fusion rules. For the identification of targets, agents need to keep track of targets for continuous situation awareness. The coordination of the agents with limited range of surveillance is indispensable for their successful monitoring of multiple targets. For dynamic and flexible coordination, our agents follow the decision-theoretic approach. We implement a military simulator to compare the capabilities of fusion processing and those of coordination, and conduct experiments with our framework in distributed and uncertain battlefield environments. The experimental results show that the fusion process of multi-sensor data from military robots can improve the performance of estimation of the type of a target, and our coordinated agents outperform agents using random strategy for their target selection in various military scenarios.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Battlefields</subject><subject>Coordination</subject><subject>Data integration</subject><subject>Decision theory</subject><subject>Infrared detectors</subject><subject>Multiagent systems</subject><subject>Multisensor fusion</subject><subject>Robots</subject><subject>Sensors</subject><subject>Simulation</subject><subject>Situational awareness</subject><subject>Surveillance</subject><subject>Target recognition</subject><subject>Tracking</subject><subject>Vehicles</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNplUMFKAzEQDaJgqf0BTwueV5PJ7nbnWKrVSsVLPS_Z7KRsiUlNsgf_3m3rQXDgMcO8x3vwGLsV_F5K5A9kSafgXa8jCi7KSl6wCfA55ggIl3_uazaLcc_HQSFrySfsde0SWdvvyKXsUSWVrYbYe5cp12Vvg019vjhxS-9D1zuVjqTxIduqsKOULaz1-vS9YVdG2Uiz3z1lH6un7fIl37w_r5eLTa6lwJTLrqzRGI1dTd28hao2rURQpWpBo245aTCm4gUYpBEApeFolKhQ1ERaTtnd2fcQ_NdAMTV7PwQ3RjZQFnUBHDkfVXBW6eBjDGSaQ-g_VfhuBG-OtTX_a5M_GjBkCg</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Noh, Sanguk</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-5072-5032</orcidid></search><sort><creationdate>20201001</creationdate><title>Intelligent Data Fusion and Multi-Agent Coordination for Target Allocation</title><author>Noh, Sanguk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3d589ffc9d8ed7b268fb392a5ab2c9cb0ec2ff6042f9e2f9225f09fa16918eec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Battlefields</topic><topic>Coordination</topic><topic>Data integration</topic><topic>Decision theory</topic><topic>Infrared detectors</topic><topic>Multiagent systems</topic><topic>Multisensor fusion</topic><topic>Robots</topic><topic>Sensors</topic><topic>Simulation</topic><topic>Situational awareness</topic><topic>Surveillance</topic><topic>Target recognition</topic><topic>Tracking</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noh, Sanguk</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noh, Sanguk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Data Fusion and Multi-Agent Coordination for Target Allocation</atitle><jtitle>Electronics (Basel)</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>9</volume><issue>10</issue><spage>1563</spage><pages>1563-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>This paper addresses the fusion processing techniques for multi-sensor data perceived through the infrared sensors of military surveillance robots, and proposes their decision-theoretic coordination to effectively monitor multiple targets. To combine the multi-sensor data from the distributed battlefield robots, a set of fusion rules are used to formulate a combined prediction from the multi-source data. The possible type of a target is estimated through the fusion rules. For the identification of targets, agents need to keep track of targets for continuous situation awareness. The coordination of the agents with limited range of surveillance is indispensable for their successful monitoring of multiple targets. For dynamic and flexible coordination, our agents follow the decision-theoretic approach. We implement a military simulator to compare the capabilities of fusion processing and those of coordination, and conduct experiments with our framework in distributed and uncertain battlefield environments. The experimental results show that the fusion process of multi-sensor data from military robots can improve the performance of estimation of the type of a target, and our coordinated agents outperform agents using random strategy for their target selection in various military scenarios.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics9101563</doi><orcidid>https://orcid.org/0000-0001-5072-5032</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2020-10, Vol.9 (10), p.1563
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2548420900
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Algorithms
Battlefields
Coordination
Data integration
Decision theory
Infrared detectors
Multiagent systems
Multisensor fusion
Robots
Sensors
Simulation
Situational awareness
Surveillance
Target recognition
Tracking
Vehicles
title Intelligent Data Fusion and Multi-Agent Coordination for Target Allocation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A25%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Data%20Fusion%20and%20Multi-Agent%20Coordination%20for%20Target%20Allocation&rft.jtitle=Electronics%20(Basel)&rft.au=Noh,%20Sanguk&rft.date=2020-10-01&rft.volume=9&rft.issue=10&rft.spage=1563&rft.pages=1563-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics9101563&rft_dat=%3Cproquest_cross%3E2548420900%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548420900&rft_id=info:pmid/&rfr_iscdi=true