Dynamic Network Topology Control of Branch-Trimming Robot for Transmission Lines
With the development of engineering technology, the distributed design-based Branch-Trimming Robot (BTR) has been used to ensure the power supply security of transmission lines. However, it remains difficult to combine distributed BTRs with a wireless sensor network to build an efficient multi-robot...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2019-05, Vol.8 (5), p.549 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 549 |
container_title | Electronics (Basel) |
container_volume | 8 |
creator | Wang, Man Wu, Gongping Fan, Fei Ji, Qiaoling He, Wenshan Cao, Qi |
description | With the development of engineering technology, the distributed design-based Branch-Trimming Robot (BTR) has been used to ensure the power supply security of transmission lines. However, it remains difficult to combine distributed BTRs with a wireless sensor network to build an efficient multi-robot system. To achieve this combination, a dynamic network topology control method was proposed, combining the motion characteristics of robots with the structure of a distributed wireless sensor network. In addition, a topology-updating mechanism based on node signal strength was adopted as well. To achieve efficient data transmission for distributed multi-robot systems, the present study focused on the design of a distributed network model and a dynamic network topology control strategy. Several simulation and test scenarios were implemented, and the changes of network performance under different parameters were studied. Furthermore, the real scene-based dynamic topology control method considers the relationship between network performance and antenna layout. |
doi_str_mv | 10.3390/electronics8050549 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548420643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548420643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a8385c8aa5a48ac66835958ae6e7f789daf6a5c68a19c8cce1ca75cc86fed4bd3</originalsourceid><addsrcrecordid>eNplkE9LxDAQxYMouOh-AU8Bz9W0adLkqOtfWFSknsvsbLJ2bTNr0kX221tZD4JzeQPvxxvmMXaWiwsprbh0ncMhUmgxGaGEKu0BmxSispktbHH4Zz9m05TWYhybSyPFhL3c7AL0LfInN3xR_OA1baij1Y7PKIyhHSfPryMEfM_q2PZ9G1b8lRY0cE-R16OT-jallgKft8GlU3bkoUtu-qsn7O3utp49ZPPn-8fZ1TxDmdshAyONQgOgoDSAWhuprDLgtKt8ZewSvAaF2kBu0SC6HKFSiEZ7tywXS3nCzve5m0ifW5eGZk3bGMaTTaFKUxZCl3Kkij2FkVKKzjeb8QmIuyYXzU95zf_y5Dc1Z2bs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548420643</pqid></control><display><type>article</type><title>Dynamic Network Topology Control of Branch-Trimming Robot for Transmission Lines</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wang, Man ; Wu, Gongping ; Fan, Fei ; Ji, Qiaoling ; He, Wenshan ; Cao, Qi</creator><creatorcontrib>Wang, Man ; Wu, Gongping ; Fan, Fei ; Ji, Qiaoling ; He, Wenshan ; Cao, Qi</creatorcontrib><description>With the development of engineering technology, the distributed design-based Branch-Trimming Robot (BTR) has been used to ensure the power supply security of transmission lines. However, it remains difficult to combine distributed BTRs with a wireless sensor network to build an efficient multi-robot system. To achieve this combination, a dynamic network topology control method was proposed, combining the motion characteristics of robots with the structure of a distributed wireless sensor network. In addition, a topology-updating mechanism based on node signal strength was adopted as well. To achieve efficient data transmission for distributed multi-robot systems, the present study focused on the design of a distributed network model and a dynamic network topology control strategy. Several simulation and test scenarios were implemented, and the changes of network performance under different parameters were studied. Furthermore, the real scene-based dynamic topology control method considers the relationship between network performance and antenna layout.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics8050549</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Blackouts ; Communication ; Computer networks ; Control algorithms ; Control methods ; Data transmission ; Distributed control systems ; Mathematical models ; Multiple robots ; Network topologies ; Power supply ; Robot control ; Robot dynamics ; Robots ; Sensors ; Signal strength ; Transmission lines ; Trimming ; Vegetation ; Wireless networks ; Wireless sensor networks</subject><ispartof>Electronics (Basel), 2019-05, Vol.8 (5), p.549</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a8385c8aa5a48ac66835958ae6e7f789daf6a5c68a19c8cce1ca75cc86fed4bd3</citedby><cites>FETCH-LOGICAL-c319t-a8385c8aa5a48ac66835958ae6e7f789daf6a5c68a19c8cce1ca75cc86fed4bd3</cites><orcidid>0000-0003-2675-8701 ; 0000-0003-1196-5847 ; 0000-0002-7994-0358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Man</creatorcontrib><creatorcontrib>Wu, Gongping</creatorcontrib><creatorcontrib>Fan, Fei</creatorcontrib><creatorcontrib>Ji, Qiaoling</creatorcontrib><creatorcontrib>He, Wenshan</creatorcontrib><creatorcontrib>Cao, Qi</creatorcontrib><title>Dynamic Network Topology Control of Branch-Trimming Robot for Transmission Lines</title><title>Electronics (Basel)</title><description>With the development of engineering technology, the distributed design-based Branch-Trimming Robot (BTR) has been used to ensure the power supply security of transmission lines. However, it remains difficult to combine distributed BTRs with a wireless sensor network to build an efficient multi-robot system. To achieve this combination, a dynamic network topology control method was proposed, combining the motion characteristics of robots with the structure of a distributed wireless sensor network. In addition, a topology-updating mechanism based on node signal strength was adopted as well. To achieve efficient data transmission for distributed multi-robot systems, the present study focused on the design of a distributed network model and a dynamic network topology control strategy. Several simulation and test scenarios were implemented, and the changes of network performance under different parameters were studied. Furthermore, the real scene-based dynamic topology control method considers the relationship between network performance and antenna layout.</description><subject>Blackouts</subject><subject>Communication</subject><subject>Computer networks</subject><subject>Control algorithms</subject><subject>Control methods</subject><subject>Data transmission</subject><subject>Distributed control systems</subject><subject>Mathematical models</subject><subject>Multiple robots</subject><subject>Network topologies</subject><subject>Power supply</subject><subject>Robot control</subject><subject>Robot dynamics</subject><subject>Robots</subject><subject>Sensors</subject><subject>Signal strength</subject><subject>Transmission lines</subject><subject>Trimming</subject><subject>Vegetation</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNplkE9LxDAQxYMouOh-AU8Bz9W0adLkqOtfWFSknsvsbLJ2bTNr0kX221tZD4JzeQPvxxvmMXaWiwsprbh0ncMhUmgxGaGEKu0BmxSispktbHH4Zz9m05TWYhybSyPFhL3c7AL0LfInN3xR_OA1baij1Y7PKIyhHSfPryMEfM_q2PZ9G1b8lRY0cE-R16OT-jallgKft8GlU3bkoUtu-qsn7O3utp49ZPPn-8fZ1TxDmdshAyONQgOgoDSAWhuprDLgtKt8ZewSvAaF2kBu0SC6HKFSiEZ7tywXS3nCzve5m0ifW5eGZk3bGMaTTaFKUxZCl3Kkij2FkVKKzjeb8QmIuyYXzU95zf_y5Dc1Z2bs</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Wang, Man</creator><creator>Wu, Gongping</creator><creator>Fan, Fei</creator><creator>Ji, Qiaoling</creator><creator>He, Wenshan</creator><creator>Cao, Qi</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-2675-8701</orcidid><orcidid>https://orcid.org/0000-0003-1196-5847</orcidid><orcidid>https://orcid.org/0000-0002-7994-0358</orcidid></search><sort><creationdate>20190501</creationdate><title>Dynamic Network Topology Control of Branch-Trimming Robot for Transmission Lines</title><author>Wang, Man ; Wu, Gongping ; Fan, Fei ; Ji, Qiaoling ; He, Wenshan ; Cao, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a8385c8aa5a48ac66835958ae6e7f789daf6a5c68a19c8cce1ca75cc86fed4bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Blackouts</topic><topic>Communication</topic><topic>Computer networks</topic><topic>Control algorithms</topic><topic>Control methods</topic><topic>Data transmission</topic><topic>Distributed control systems</topic><topic>Mathematical models</topic><topic>Multiple robots</topic><topic>Network topologies</topic><topic>Power supply</topic><topic>Robot control</topic><topic>Robot dynamics</topic><topic>Robots</topic><topic>Sensors</topic><topic>Signal strength</topic><topic>Transmission lines</topic><topic>Trimming</topic><topic>Vegetation</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Man</creatorcontrib><creatorcontrib>Wu, Gongping</creatorcontrib><creatorcontrib>Fan, Fei</creatorcontrib><creatorcontrib>Ji, Qiaoling</creatorcontrib><creatorcontrib>He, Wenshan</creatorcontrib><creatorcontrib>Cao, Qi</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Man</au><au>Wu, Gongping</au><au>Fan, Fei</au><au>Ji, Qiaoling</au><au>He, Wenshan</au><au>Cao, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Network Topology Control of Branch-Trimming Robot for Transmission Lines</atitle><jtitle>Electronics (Basel)</jtitle><date>2019-05-01</date><risdate>2019</risdate><volume>8</volume><issue>5</issue><spage>549</spage><pages>549-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>With the development of engineering technology, the distributed design-based Branch-Trimming Robot (BTR) has been used to ensure the power supply security of transmission lines. However, it remains difficult to combine distributed BTRs with a wireless sensor network to build an efficient multi-robot system. To achieve this combination, a dynamic network topology control method was proposed, combining the motion characteristics of robots with the structure of a distributed wireless sensor network. In addition, a topology-updating mechanism based on node signal strength was adopted as well. To achieve efficient data transmission for distributed multi-robot systems, the present study focused on the design of a distributed network model and a dynamic network topology control strategy. Several simulation and test scenarios were implemented, and the changes of network performance under different parameters were studied. Furthermore, the real scene-based dynamic topology control method considers the relationship between network performance and antenna layout.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics8050549</doi><orcidid>https://orcid.org/0000-0003-2675-8701</orcidid><orcidid>https://orcid.org/0000-0003-1196-5847</orcidid><orcidid>https://orcid.org/0000-0002-7994-0358</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2019-05, Vol.8 (5), p.549 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2548420643 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Blackouts Communication Computer networks Control algorithms Control methods Data transmission Distributed control systems Mathematical models Multiple robots Network topologies Power supply Robot control Robot dynamics Robots Sensors Signal strength Transmission lines Trimming Vegetation Wireless networks Wireless sensor networks |
title | Dynamic Network Topology Control of Branch-Trimming Robot for Transmission Lines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T14%3A25%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Network%20Topology%20Control%20of%20Branch-Trimming%20Robot%20for%20Transmission%20Lines&rft.jtitle=Electronics%20(Basel)&rft.au=Wang,%20Man&rft.date=2019-05-01&rft.volume=8&rft.issue=5&rft.spage=549&rft.pages=549-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics8050549&rft_dat=%3Cproquest_cross%3E2548420643%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548420643&rft_id=info:pmid/&rfr_iscdi=true |