X-ray irradiation-induced degradation in Hf0.5Zr0.5O2 fully depleted silicon-on-insulator n-type metal oxide semiconductor field-effect transistors
The n-type ultrathin fully depleted silicon-on-insulator (FDSOI) metal–oxide–semiconductor field-effect transistors (MOSFETs), with a Hf 0.5 Zr 0.5 O 2 high dielectric permittivity (high- k ) dielectric as gate insulator, were fabricated. The total ionizing dose effects were investigated, and an X-r...
Gespeichert in:
Veröffentlicht in: | Rare metals 2021-11, Vol.40 (11), p.3299-3307 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3307 |
---|---|
container_issue | 11 |
container_start_page | 3299 |
container_title | Rare metals |
container_volume | 40 |
creator | Li, Yu-Dong Zhang, Qing-Zhu Liu, Fan-Yu Zhang, Zhao-Hao Zhang, Feng-Yuan Zhao, Hong-Bin Li, Bo Yan, Jiang |
description | The n-type ultrathin fully depleted silicon-on-insulator (FDSOI) metal–oxide–semiconductor field-effect transistors (MOSFETs), with a Hf
0.5
Zr
0.5
O
2
high dielectric permittivity (high-
k
) dielectric as gate insulator, were fabricated. The total ionizing dose effects were investigated, and an X-ray radiation dose up to 1500 krad(Si) was applied for both long- and short-channel devices. The short-channel devices (0.025–0.100 μm) exhibited less irradiation sensitivity compared with the long-channel devices (0.35–16 μm), leading to a 71% reduction in the irradiation-induced drain current growth and a 26% decrease in the shift of the threshold voltage. It was experimentally demonstrated that the OFF mode is the worst case among the three working conditions (OFF, ON and All0) for short-channel devices. Also, the determined effective electron mobility was enhanced by 38% after X-ray irradiation, attributed to the different compensations for charges triggered by radiation between the high-
k
dielectric and buried oxide. By extracting the carrier mobility, gate length modulation, and source/drain (S/D) parasitic resistance, the degradation mechanism on X-ray irradiation was revealed. Finally, the split capacitance–voltage measurements were used to validate the analysis. |
doi_str_mv | 10.1007/s12598-020-01586-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548419602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548419602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7270010573d7682fbbcef3c0aac69a8b3953e21963e8e9f4240d424ad8daff333</originalsourceid><addsrcrecordid>eNp9kM1KAzEURgdRsFZfwFXAdepNMj-ZpRS1QqEbBXET0slNSZnO1CQDtq_hC5u2gjs3N-HjnBvyZdktgwkDqO4D40UtKXCgwApZ0v1ZNmKyrGjFZHGe7gCMQsHZZXYVwhogz8sSRtn3O_V6R5z32jgdXd9R15mhQUMMrlJ4zIjryMzCpPjwaSw4sUPb7hKxbTEmNLjWNUk92mFodew96WjcbZFsMOqW9F_OIAm4OXBp_wGwDltD0VpsIoled8GFlIfr7MLqNuDN7znO3p4eX6czOl88v0wf5rQRrI604lX6FBSVMFUpuV0uG7SiAa2bstZyKepCIGd1KVBibXOeg0lDG2m0tUKIcXZ32rv1_eeAIap1P_guPal4kcs8qcATxU9U4_sQPFq19W6j_U4xUIfy1al8lcpXx_LVPkniJIUEdyv0f6v_sX4AnUaKgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548419602</pqid></control><display><type>article</type><title>X-ray irradiation-induced degradation in Hf0.5Zr0.5O2 fully depleted silicon-on-insulator n-type metal oxide semiconductor field-effect transistors</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Li, Yu-Dong ; Zhang, Qing-Zhu ; Liu, Fan-Yu ; Zhang, Zhao-Hao ; Zhang, Feng-Yuan ; Zhao, Hong-Bin ; Li, Bo ; Yan, Jiang</creator><creatorcontrib>Li, Yu-Dong ; Zhang, Qing-Zhu ; Liu, Fan-Yu ; Zhang, Zhao-Hao ; Zhang, Feng-Yuan ; Zhao, Hong-Bin ; Li, Bo ; Yan, Jiang</creatorcontrib><description>The n-type ultrathin fully depleted silicon-on-insulator (FDSOI) metal–oxide–semiconductor field-effect transistors (MOSFETs), with a Hf
0.5
Zr
0.5
O
2
high dielectric permittivity (high-
k
) dielectric as gate insulator, were fabricated. The total ionizing dose effects were investigated, and an X-ray radiation dose up to 1500 krad(Si) was applied for both long- and short-channel devices. The short-channel devices (0.025–0.100 μm) exhibited less irradiation sensitivity compared with the long-channel devices (0.35–16 μm), leading to a 71% reduction in the irradiation-induced drain current growth and a 26% decrease in the shift of the threshold voltage. It was experimentally demonstrated that the OFF mode is the worst case among the three working conditions (OFF, ON and All0) for short-channel devices. Also, the determined effective electron mobility was enhanced by 38% after X-ray irradiation, attributed to the different compensations for charges triggered by radiation between the high-
k
dielectric and buried oxide. By extracting the carrier mobility, gate length modulation, and source/drain (S/D) parasitic resistance, the degradation mechanism on X-ray irradiation was revealed. Finally, the split capacitance–voltage measurements were used to validate the analysis.</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-020-01586-z</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Biomaterials ; Carrier mobility ; Chemistry and Materials Science ; Degradation ; Depletion ; Dielectrics ; Electrical measurement ; Electron mobility ; Energy ; Field effect transistors ; Food irradiation ; Materials Engineering ; Materials Science ; Metal oxide semiconductors ; Metallic Materials ; MOSFETs ; N-type semiconductors ; Nanoscale Science and Technology ; Original Article ; Physical Chemistry ; Radiation ; Radiation dosage ; Semiconductor devices ; Silicon ; SOI (semiconductors) ; Threshold voltage ; Transistors ; X ray irradiation</subject><ispartof>Rare metals, 2021-11, Vol.40 (11), p.3299-3307</ispartof><rights>GRINM Bohan (Beijing) Publishing Co., Ltd 2020</rights><rights>GRINM Bohan (Beijing) Publishing Co., Ltd 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7270010573d7682fbbcef3c0aac69a8b3953e21963e8e9f4240d424ad8daff333</citedby><cites>FETCH-LOGICAL-c319t-7270010573d7682fbbcef3c0aac69a8b3953e21963e8e9f4240d424ad8daff333</cites><orcidid>0000-0003-4905-2744 ; 0000-0002-6154-4971 ; 0000-0002-1332-8852</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12598-020-01586-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12598-020-01586-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Li, Yu-Dong</creatorcontrib><creatorcontrib>Zhang, Qing-Zhu</creatorcontrib><creatorcontrib>Liu, Fan-Yu</creatorcontrib><creatorcontrib>Zhang, Zhao-Hao</creatorcontrib><creatorcontrib>Zhang, Feng-Yuan</creatorcontrib><creatorcontrib>Zhao, Hong-Bin</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Yan, Jiang</creatorcontrib><title>X-ray irradiation-induced degradation in Hf0.5Zr0.5O2 fully depleted silicon-on-insulator n-type metal oxide semiconductor field-effect transistors</title><title>Rare metals</title><addtitle>Rare Met</addtitle><description>The n-type ultrathin fully depleted silicon-on-insulator (FDSOI) metal–oxide–semiconductor field-effect transistors (MOSFETs), with a Hf
0.5
Zr
0.5
O
2
high dielectric permittivity (high-
k
) dielectric as gate insulator, were fabricated. The total ionizing dose effects were investigated, and an X-ray radiation dose up to 1500 krad(Si) was applied for both long- and short-channel devices. The short-channel devices (0.025–0.100 μm) exhibited less irradiation sensitivity compared with the long-channel devices (0.35–16 μm), leading to a 71% reduction in the irradiation-induced drain current growth and a 26% decrease in the shift of the threshold voltage. It was experimentally demonstrated that the OFF mode is the worst case among the three working conditions (OFF, ON and All0) for short-channel devices. Also, the determined effective electron mobility was enhanced by 38% after X-ray irradiation, attributed to the different compensations for charges triggered by radiation between the high-
k
dielectric and buried oxide. By extracting the carrier mobility, gate length modulation, and source/drain (S/D) parasitic resistance, the degradation mechanism on X-ray irradiation was revealed. Finally, the split capacitance–voltage measurements were used to validate the analysis.</description><subject>Biomaterials</subject><subject>Carrier mobility</subject><subject>Chemistry and Materials Science</subject><subject>Degradation</subject><subject>Depletion</subject><subject>Dielectrics</subject><subject>Electrical measurement</subject><subject>Electron mobility</subject><subject>Energy</subject><subject>Field effect transistors</subject><subject>Food irradiation</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metal oxide semiconductors</subject><subject>Metallic Materials</subject><subject>MOSFETs</subject><subject>N-type semiconductors</subject><subject>Nanoscale Science and Technology</subject><subject>Original Article</subject><subject>Physical Chemistry</subject><subject>Radiation</subject><subject>Radiation dosage</subject><subject>Semiconductor devices</subject><subject>Silicon</subject><subject>SOI (semiconductors)</subject><subject>Threshold voltage</subject><subject>Transistors</subject><subject>X ray irradiation</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEURgdRsFZfwFXAdepNMj-ZpRS1QqEbBXET0slNSZnO1CQDtq_hC5u2gjs3N-HjnBvyZdktgwkDqO4D40UtKXCgwApZ0v1ZNmKyrGjFZHGe7gCMQsHZZXYVwhogz8sSRtn3O_V6R5z32jgdXd9R15mhQUMMrlJ4zIjryMzCpPjwaSw4sUPb7hKxbTEmNLjWNUk92mFodew96WjcbZFsMOqW9F_OIAm4OXBp_wGwDltD0VpsIoled8GFlIfr7MLqNuDN7znO3p4eX6czOl88v0wf5rQRrI604lX6FBSVMFUpuV0uG7SiAa2bstZyKepCIGd1KVBibXOeg0lDG2m0tUKIcXZ32rv1_eeAIap1P_guPal4kcs8qcATxU9U4_sQPFq19W6j_U4xUIfy1al8lcpXx_LVPkniJIUEdyv0f6v_sX4AnUaKgg</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Li, Yu-Dong</creator><creator>Zhang, Qing-Zhu</creator><creator>Liu, Fan-Yu</creator><creator>Zhang, Zhao-Hao</creator><creator>Zhang, Feng-Yuan</creator><creator>Zhao, Hong-Bin</creator><creator>Li, Bo</creator><creator>Yan, Jiang</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4905-2744</orcidid><orcidid>https://orcid.org/0000-0002-6154-4971</orcidid><orcidid>https://orcid.org/0000-0002-1332-8852</orcidid></search><sort><creationdate>20211101</creationdate><title>X-ray irradiation-induced degradation in Hf0.5Zr0.5O2 fully depleted silicon-on-insulator n-type metal oxide semiconductor field-effect transistors</title><author>Li, Yu-Dong ; Zhang, Qing-Zhu ; Liu, Fan-Yu ; Zhang, Zhao-Hao ; Zhang, Feng-Yuan ; Zhao, Hong-Bin ; Li, Bo ; Yan, Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7270010573d7682fbbcef3c0aac69a8b3953e21963e8e9f4240d424ad8daff333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomaterials</topic><topic>Carrier mobility</topic><topic>Chemistry and Materials Science</topic><topic>Degradation</topic><topic>Depletion</topic><topic>Dielectrics</topic><topic>Electrical measurement</topic><topic>Electron mobility</topic><topic>Energy</topic><topic>Field effect transistors</topic><topic>Food irradiation</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metal oxide semiconductors</topic><topic>Metallic Materials</topic><topic>MOSFETs</topic><topic>N-type semiconductors</topic><topic>Nanoscale Science and Technology</topic><topic>Original Article</topic><topic>Physical Chemistry</topic><topic>Radiation</topic><topic>Radiation dosage</topic><topic>Semiconductor devices</topic><topic>Silicon</topic><topic>SOI (semiconductors)</topic><topic>Threshold voltage</topic><topic>Transistors</topic><topic>X ray irradiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yu-Dong</creatorcontrib><creatorcontrib>Zhang, Qing-Zhu</creatorcontrib><creatorcontrib>Liu, Fan-Yu</creatorcontrib><creatorcontrib>Zhang, Zhao-Hao</creatorcontrib><creatorcontrib>Zhang, Feng-Yuan</creatorcontrib><creatorcontrib>Zhao, Hong-Bin</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Yan, Jiang</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yu-Dong</au><au>Zhang, Qing-Zhu</au><au>Liu, Fan-Yu</au><au>Zhang, Zhao-Hao</au><au>Zhang, Feng-Yuan</au><au>Zhao, Hong-Bin</au><au>Li, Bo</au><au>Yan, Jiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>X-ray irradiation-induced degradation in Hf0.5Zr0.5O2 fully depleted silicon-on-insulator n-type metal oxide semiconductor field-effect transistors</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>40</volume><issue>11</issue><spage>3299</spage><epage>3307</epage><pages>3299-3307</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>The n-type ultrathin fully depleted silicon-on-insulator (FDSOI) metal–oxide–semiconductor field-effect transistors (MOSFETs), with a Hf
0.5
Zr
0.5
O
2
high dielectric permittivity (high-
k
) dielectric as gate insulator, were fabricated. The total ionizing dose effects were investigated, and an X-ray radiation dose up to 1500 krad(Si) was applied for both long- and short-channel devices. The short-channel devices (0.025–0.100 μm) exhibited less irradiation sensitivity compared with the long-channel devices (0.35–16 μm), leading to a 71% reduction in the irradiation-induced drain current growth and a 26% decrease in the shift of the threshold voltage. It was experimentally demonstrated that the OFF mode is the worst case among the three working conditions (OFF, ON and All0) for short-channel devices. Also, the determined effective electron mobility was enhanced by 38% after X-ray irradiation, attributed to the different compensations for charges triggered by radiation between the high-
k
dielectric and buried oxide. By extracting the carrier mobility, gate length modulation, and source/drain (S/D) parasitic resistance, the degradation mechanism on X-ray irradiation was revealed. Finally, the split capacitance–voltage measurements were used to validate the analysis.</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-020-01586-z</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4905-2744</orcidid><orcidid>https://orcid.org/0000-0002-6154-4971</orcidid><orcidid>https://orcid.org/0000-0002-1332-8852</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-0521 |
ispartof | Rare metals, 2021-11, Vol.40 (11), p.3299-3307 |
issn | 1001-0521 1867-7185 |
language | eng |
recordid | cdi_proquest_journals_2548419602 |
source | SpringerLink Journals; Alma/SFX Local Collection |
subjects | Biomaterials Carrier mobility Chemistry and Materials Science Degradation Depletion Dielectrics Electrical measurement Electron mobility Energy Field effect transistors Food irradiation Materials Engineering Materials Science Metal oxide semiconductors Metallic Materials MOSFETs N-type semiconductors Nanoscale Science and Technology Original Article Physical Chemistry Radiation Radiation dosage Semiconductor devices Silicon SOI (semiconductors) Threshold voltage Transistors X ray irradiation |
title | X-ray irradiation-induced degradation in Hf0.5Zr0.5O2 fully depleted silicon-on-insulator n-type metal oxide semiconductor field-effect transistors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A52%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=X-ray%20irradiation-induced%20degradation%20in%20Hf0.5Zr0.5O2%20fully%20depleted%20silicon-on-insulator%20n-type%20metal%20oxide%20semiconductor%20field-effect%20transistors&rft.jtitle=Rare%20metals&rft.au=Li,%20Yu-Dong&rft.date=2021-11-01&rft.volume=40&rft.issue=11&rft.spage=3299&rft.epage=3307&rft.pages=3299-3307&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-020-01586-z&rft_dat=%3Cproquest_cross%3E2548419602%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548419602&rft_id=info:pmid/&rfr_iscdi=true |