GWR-PM - Spatial variation relationship analysis with Geographically Weighted Regression (GWR) - An application at Peninsular Malaysia

GWR-PM has been developed exclusively for decision makers in Peninsular Malaysia and the purpose is to provide them with additional flexibility in analysing spatial variation. While GWR extension analysis in ArcMap application has a universal coordinate system, GWR-PM is specifically designed with P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Earth and environmental science 2016-06, Vol.37 (1), p.12032
Hauptverfasser: Jamhuri, J, Azhar, B M S, Puan, C L, Norizah, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12032
container_title IOP conference series. Earth and environmental science
container_volume 37
creator Jamhuri, J
Azhar, B M S
Puan, C L
Norizah, K
description GWR-PM has been developed exclusively for decision makers in Peninsular Malaysia and the purpose is to provide them with additional flexibility in analysing spatial variation. While GWR extension analysis in ArcMap application has a universal coordinate system, GWR-PM is specifically designed with Peninsular Malaysia's coordinate system of Kertau RSO Malaya Meter. This paper presents the development of GWR-PM model by using a model builder, the application of which is to examine the forest fire risk at North Selangor Peat Swamp Forest. This model can be extended and improved by using ArcGIS language of phyton.
doi_str_mv 10.1088/1755-1315/37/1/012032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548418075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548418075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-6662e37928d1be0ae41c9c6186503c4f0d8927468cdbf5d79ff7a22f76e250fe3</originalsourceid><addsrcrecordid>eNp9kNFKwzAYhYsoqNNHEAJeqBe1Sdo07aWMOYWJY1O8DL9tskZiG5NO2Qv43GZO1AvxKofwnQ_-E0VHBJ8TXBQJ4YzFJCUsSXlCEkwoTulWtPf9v_2dMd-N9r1_wjjnWVruRe_jh1k8vUExmlvoNRj0Ck6H1LXISfMZfKMtghbMymuP3nTfoLHsFg5soyswZoUepF40vazRTC6c9H7dPg3ms-C9aBFYawL5KYUeTWWrW7804NANGAhWOIh2FBgvD7_eQXR_ObobXsWT2_H18GISVxljfZznOZUpL2lRk0eJQWakKqucFDnDaZUpXBcl5VleVPWjYjUvleJAqeK5pAwrmQ6i443Xuu5lKX0vnrqlC6d5QVlWZKTAnAWKbajKdd47qYR1-hncShAs1pOL9ZxiPa1IuSBiM3nonWx6urM_4tFo_psStlaBJH-Q_9s_AKmTj7E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548418075</pqid></control><display><type>article</type><title>GWR-PM - Spatial variation relationship analysis with Geographically Weighted Regression (GWR) - An application at Peninsular Malaysia</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><creator>Jamhuri, J ; Azhar, B M S ; Puan, C L ; Norizah, K</creator><creatorcontrib>Jamhuri, J ; Azhar, B M S ; Puan, C L ; Norizah, K</creatorcontrib><description>GWR-PM has been developed exclusively for decision makers in Peninsular Malaysia and the purpose is to provide them with additional flexibility in analysing spatial variation. While GWR extension analysis in ArcMap application has a universal coordinate system, GWR-PM is specifically designed with Peninsular Malaysia's coordinate system of Kertau RSO Malaya Meter. This paper presents the development of GWR-PM model by using a model builder, the application of which is to examine the forest fire risk at North Selangor Peat Swamp Forest. This model can be extended and improved by using ArcGIS language of phyton.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/37/1/012032</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Coordinates ; Forest fires ; Peat ; Spatial analysis ; Spatial variations</subject><ispartof>IOP conference series. Earth and environmental science, 2016-06, Vol.37 (1), p.12032</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-6662e37928d1be0ae41c9c6186503c4f0d8927468cdbf5d79ff7a22f76e250fe3</citedby><cites>FETCH-LOGICAL-c455t-6662e37928d1be0ae41c9c6186503c4f0d8927468cdbf5d79ff7a22f76e250fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1755-1315/37/1/012032/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Jamhuri, J</creatorcontrib><creatorcontrib>Azhar, B M S</creatorcontrib><creatorcontrib>Puan, C L</creatorcontrib><creatorcontrib>Norizah, K</creatorcontrib><title>GWR-PM - Spatial variation relationship analysis with Geographically Weighted Regression (GWR) - An application at Peninsular Malaysia</title><title>IOP conference series. Earth and environmental science</title><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><description>GWR-PM has been developed exclusively for decision makers in Peninsular Malaysia and the purpose is to provide them with additional flexibility in analysing spatial variation. While GWR extension analysis in ArcMap application has a universal coordinate system, GWR-PM is specifically designed with Peninsular Malaysia's coordinate system of Kertau RSO Malaya Meter. This paper presents the development of GWR-PM model by using a model builder, the application of which is to examine the forest fire risk at North Selangor Peat Swamp Forest. This model can be extended and improved by using ArcGIS language of phyton.</description><subject>Coordinates</subject><subject>Forest fires</subject><subject>Peat</subject><subject>Spatial analysis</subject><subject>Spatial variations</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kNFKwzAYhYsoqNNHEAJeqBe1Sdo07aWMOYWJY1O8DL9tskZiG5NO2Qv43GZO1AvxKofwnQ_-E0VHBJ8TXBQJ4YzFJCUsSXlCEkwoTulWtPf9v_2dMd-N9r1_wjjnWVruRe_jh1k8vUExmlvoNRj0Ck6H1LXISfMZfKMtghbMymuP3nTfoLHsFg5soyswZoUepF40vazRTC6c9H7dPg3ms-C9aBFYawL5KYUeTWWrW7804NANGAhWOIh2FBgvD7_eQXR_ObobXsWT2_H18GISVxljfZznOZUpL2lRk0eJQWakKqucFDnDaZUpXBcl5VleVPWjYjUvleJAqeK5pAwrmQ6i443Xuu5lKX0vnrqlC6d5QVlWZKTAnAWKbajKdd47qYR1-hncShAs1pOL9ZxiPa1IuSBiM3nonWx6urM_4tFo_psStlaBJH-Q_9s_AKmTj7E</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Jamhuri, J</creator><creator>Azhar, B M S</creator><creator>Puan, C L</creator><creator>Norizah, K</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20160601</creationdate><title>GWR-PM - Spatial variation relationship analysis with Geographically Weighted Regression (GWR) - An application at Peninsular Malaysia</title><author>Jamhuri, J ; Azhar, B M S ; Puan, C L ; Norizah, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-6662e37928d1be0ae41c9c6186503c4f0d8927468cdbf5d79ff7a22f76e250fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Coordinates</topic><topic>Forest fires</topic><topic>Peat</topic><topic>Spatial analysis</topic><topic>Spatial variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jamhuri, J</creatorcontrib><creatorcontrib>Azhar, B M S</creatorcontrib><creatorcontrib>Puan, C L</creatorcontrib><creatorcontrib>Norizah, K</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jamhuri, J</au><au>Azhar, B M S</au><au>Puan, C L</au><au>Norizah, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GWR-PM - Spatial variation relationship analysis with Geographically Weighted Regression (GWR) - An application at Peninsular Malaysia</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>37</volume><issue>1</issue><spage>12032</spage><pages>12032-</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>GWR-PM has been developed exclusively for decision makers in Peninsular Malaysia and the purpose is to provide them with additional flexibility in analysing spatial variation. While GWR extension analysis in ArcMap application has a universal coordinate system, GWR-PM is specifically designed with Peninsular Malaysia's coordinate system of Kertau RSO Malaya Meter. This paper presents the development of GWR-PM model by using a model builder, the application of which is to examine the forest fire risk at North Selangor Peat Swamp Forest. This model can be extended and improved by using ArcGIS language of phyton.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/37/1/012032</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-1307
ispartof IOP conference series. Earth and environmental science, 2016-06, Vol.37 (1), p.12032
issn 1755-1307
1755-1315
language eng
recordid cdi_proquest_journals_2548418075
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra
subjects Coordinates
Forest fires
Peat
Spatial analysis
Spatial variations
title GWR-PM - Spatial variation relationship analysis with Geographically Weighted Regression (GWR) - An application at Peninsular Malaysia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A17%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GWR-PM%20-%20Spatial%20variation%20relationship%20analysis%20with%20Geographically%20Weighted%20Regression%20(GWR)%20-%20An%20application%20at%20Peninsular%20Malaysia&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Jamhuri,%20J&rft.date=2016-06-01&rft.volume=37&rft.issue=1&rft.spage=12032&rft.pages=12032-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/37/1/012032&rft_dat=%3Cproquest_cross%3E2548418075%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548418075&rft_id=info:pmid/&rfr_iscdi=true