A High-Accuracy Ultra-Low-Power Offset-Cancelation On-Off Bandgap Reference for Implantable Medical Electronics

An ultra-low-power and high-accuracy on-off bandgap reference (BGR) is demonstrated in this paper for implantable medical electronics. The proposed BGR shows an average current consumption of 78 nA under 2.8 V supply and an output voltage of 1.17 V with an untrimmed accuracy of 0.69%. The on-off ban...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2019-07, Vol.8 (7), p.814
Hauptverfasser: Xu, Jiangtao, Wang, Yawei, Wu, Minshun, Zhang, Ruizhi, Wei, Sufen, Zhang, Guohe, Yang, Cheng-Fu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 814
container_title Electronics (Basel)
container_volume 8
creator Xu, Jiangtao
Wang, Yawei
Wu, Minshun
Zhang, Ruizhi
Wei, Sufen
Zhang, Guohe
Yang, Cheng-Fu
description An ultra-low-power and high-accuracy on-off bandgap reference (BGR) is demonstrated in this paper for implantable medical electronics. The proposed BGR shows an average current consumption of 78 nA under 2.8 V supply and an output voltage of 1.17 V with an untrimmed accuracy of 0.69%. The on-off bandgap combined with sample-and-hold switched-RC filter is developed to reduce power consumption and noise. The on-off mechanism allows a relatively higher current in the sample phase to alleviate the process variation of bipolar transistors. To compensate the error caused by operational amplifier offset, the correlated double sampling strategy is adopted in the BGR. The proposed BGR is implemented in 0.35 μm standard CMOS process and occupies a total area of 0.063 mm2. Measurement results show that the circuit works properly in the supply voltage range of 1.8–3.2 V and achieves a line regulation of 0.59 mV/V. When the temperature varies from −20 to 80 °C, an average temperature coefficient of 19.6 ppm/°C is achieved.
doi_str_mv 10.3390/electronics8070814
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548394619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548394619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-151cfbfdee1f40b012e1aec20850344129b5b34b848f28236153b14540dacec23</originalsourceid><addsrcrecordid>eNplkE9LAzEQxYMoWGq_gKeA52j-bZsca6m2UKmIPS_Z7KRu2SZrklL67V2poOBc3jDzY97wELpl9F4ITR-gBZtj8I1Nik6oYvICDTidaKK55pd_-ms0SmlH-9JMKEEHKEzxotl-kKm1h2jsCW_aHA1ZhSN5DUeIeO1cgkxmxltoTW6Cx2tP-il-NL7emg6_gYMI_Rq7EPFy37XGZ1O1gF-gbqxp8fz3wRt05UybYPSjQ7R5mr_PFmS1fl7OpitiBdOZsIJZV7kagDlJK8o4MAOWU1VQISXjuioqISslleOKizErRMVkIWltbM-JIbo73-1i-DxAyuUuHKLvLUteSCW0HDPdU_xM2RhSiuDKLjZ7E08lo-V3tuX_bMUXEihvgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548394619</pqid></control><display><type>article</type><title>A High-Accuracy Ultra-Low-Power Offset-Cancelation On-Off Bandgap Reference for Implantable Medical Electronics</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Xu, Jiangtao ; Wang, Yawei ; Wu, Minshun ; Zhang, Ruizhi ; Wei, Sufen ; Zhang, Guohe ; Yang, Cheng-Fu</creator><creatorcontrib>Xu, Jiangtao ; Wang, Yawei ; Wu, Minshun ; Zhang, Ruizhi ; Wei, Sufen ; Zhang, Guohe ; Yang, Cheng-Fu</creatorcontrib><description>An ultra-low-power and high-accuracy on-off bandgap reference (BGR) is demonstrated in this paper for implantable medical electronics. The proposed BGR shows an average current consumption of 78 nA under 2.8 V supply and an output voltage of 1.17 V with an untrimmed accuracy of 0.69%. The on-off bandgap combined with sample-and-hold switched-RC filter is developed to reduce power consumption and noise. The on-off mechanism allows a relatively higher current in the sample phase to alleviate the process variation of bipolar transistors. To compensate the error caused by operational amplifier offset, the correlated double sampling strategy is adopted in the BGR. The proposed BGR is implemented in 0.35 μm standard CMOS process and occupies a total area of 0.063 mm2. Measurement results show that the circuit works properly in the supply voltage range of 1.8–3.2 V and achieves a line regulation of 0.59 mV/V. When the temperature varies from −20 to 80 °C, an average temperature coefficient of 19.6 ppm/°C is achieved.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics8070814</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Bipolar transistors ; Circuits ; Clocks &amp; watches ; CMOS ; Design ; Electric potential ; Electronics ; Energy gap ; Error compensation ; Medical equipment ; Noise ; Operational amplifiers ; Power consumption ; RC circuits ; Semiconductor devices ; Signal processing ; Transistors ; Voltage</subject><ispartof>Electronics (Basel), 2019-07, Vol.8 (7), p.814</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-151cfbfdee1f40b012e1aec20850344129b5b34b848f28236153b14540dacec23</citedby><cites>FETCH-LOGICAL-c319t-151cfbfdee1f40b012e1aec20850344129b5b34b848f28236153b14540dacec23</cites><orcidid>0000-0002-7508-2560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, Jiangtao</creatorcontrib><creatorcontrib>Wang, Yawei</creatorcontrib><creatorcontrib>Wu, Minshun</creatorcontrib><creatorcontrib>Zhang, Ruizhi</creatorcontrib><creatorcontrib>Wei, Sufen</creatorcontrib><creatorcontrib>Zhang, Guohe</creatorcontrib><creatorcontrib>Yang, Cheng-Fu</creatorcontrib><title>A High-Accuracy Ultra-Low-Power Offset-Cancelation On-Off Bandgap Reference for Implantable Medical Electronics</title><title>Electronics (Basel)</title><description>An ultra-low-power and high-accuracy on-off bandgap reference (BGR) is demonstrated in this paper for implantable medical electronics. The proposed BGR shows an average current consumption of 78 nA under 2.8 V supply and an output voltage of 1.17 V with an untrimmed accuracy of 0.69%. The on-off bandgap combined with sample-and-hold switched-RC filter is developed to reduce power consumption and noise. The on-off mechanism allows a relatively higher current in the sample phase to alleviate the process variation of bipolar transistors. To compensate the error caused by operational amplifier offset, the correlated double sampling strategy is adopted in the BGR. The proposed BGR is implemented in 0.35 μm standard CMOS process and occupies a total area of 0.063 mm2. Measurement results show that the circuit works properly in the supply voltage range of 1.8–3.2 V and achieves a line regulation of 0.59 mV/V. When the temperature varies from −20 to 80 °C, an average temperature coefficient of 19.6 ppm/°C is achieved.</description><subject>Accuracy</subject><subject>Bipolar transistors</subject><subject>Circuits</subject><subject>Clocks &amp; watches</subject><subject>CMOS</subject><subject>Design</subject><subject>Electric potential</subject><subject>Electronics</subject><subject>Energy gap</subject><subject>Error compensation</subject><subject>Medical equipment</subject><subject>Noise</subject><subject>Operational amplifiers</subject><subject>Power consumption</subject><subject>RC circuits</subject><subject>Semiconductor devices</subject><subject>Signal processing</subject><subject>Transistors</subject><subject>Voltage</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNplkE9LAzEQxYMoWGq_gKeA52j-bZsca6m2UKmIPS_Z7KRu2SZrklL67V2poOBc3jDzY97wELpl9F4ITR-gBZtj8I1Nik6oYvICDTidaKK55pd_-ms0SmlH-9JMKEEHKEzxotl-kKm1h2jsCW_aHA1ZhSN5DUeIeO1cgkxmxltoTW6Cx2tP-il-NL7emg6_gYMI_Rq7EPFy37XGZ1O1gF-gbqxp8fz3wRt05UybYPSjQ7R5mr_PFmS1fl7OpitiBdOZsIJZV7kagDlJK8o4MAOWU1VQISXjuioqISslleOKizErRMVkIWltbM-JIbo73-1i-DxAyuUuHKLvLUteSCW0HDPdU_xM2RhSiuDKLjZ7E08lo-V3tuX_bMUXEihvgg</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Xu, Jiangtao</creator><creator>Wang, Yawei</creator><creator>Wu, Minshun</creator><creator>Zhang, Ruizhi</creator><creator>Wei, Sufen</creator><creator>Zhang, Guohe</creator><creator>Yang, Cheng-Fu</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-7508-2560</orcidid></search><sort><creationdate>20190701</creationdate><title>A High-Accuracy Ultra-Low-Power Offset-Cancelation On-Off Bandgap Reference for Implantable Medical Electronics</title><author>Xu, Jiangtao ; Wang, Yawei ; Wu, Minshun ; Zhang, Ruizhi ; Wei, Sufen ; Zhang, Guohe ; Yang, Cheng-Fu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-151cfbfdee1f40b012e1aec20850344129b5b34b848f28236153b14540dacec23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Bipolar transistors</topic><topic>Circuits</topic><topic>Clocks &amp; watches</topic><topic>CMOS</topic><topic>Design</topic><topic>Electric potential</topic><topic>Electronics</topic><topic>Energy gap</topic><topic>Error compensation</topic><topic>Medical equipment</topic><topic>Noise</topic><topic>Operational amplifiers</topic><topic>Power consumption</topic><topic>RC circuits</topic><topic>Semiconductor devices</topic><topic>Signal processing</topic><topic>Transistors</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jiangtao</creatorcontrib><creatorcontrib>Wang, Yawei</creatorcontrib><creatorcontrib>Wu, Minshun</creatorcontrib><creatorcontrib>Zhang, Ruizhi</creatorcontrib><creatorcontrib>Wei, Sufen</creatorcontrib><creatorcontrib>Zhang, Guohe</creatorcontrib><creatorcontrib>Yang, Cheng-Fu</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jiangtao</au><au>Wang, Yawei</au><au>Wu, Minshun</au><au>Zhang, Ruizhi</au><au>Wei, Sufen</au><au>Zhang, Guohe</au><au>Yang, Cheng-Fu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A High-Accuracy Ultra-Low-Power Offset-Cancelation On-Off Bandgap Reference for Implantable Medical Electronics</atitle><jtitle>Electronics (Basel)</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>8</volume><issue>7</issue><spage>814</spage><pages>814-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>An ultra-low-power and high-accuracy on-off bandgap reference (BGR) is demonstrated in this paper for implantable medical electronics. The proposed BGR shows an average current consumption of 78 nA under 2.8 V supply and an output voltage of 1.17 V with an untrimmed accuracy of 0.69%. The on-off bandgap combined with sample-and-hold switched-RC filter is developed to reduce power consumption and noise. The on-off mechanism allows a relatively higher current in the sample phase to alleviate the process variation of bipolar transistors. To compensate the error caused by operational amplifier offset, the correlated double sampling strategy is adopted in the BGR. The proposed BGR is implemented in 0.35 μm standard CMOS process and occupies a total area of 0.063 mm2. Measurement results show that the circuit works properly in the supply voltage range of 1.8–3.2 V and achieves a line regulation of 0.59 mV/V. When the temperature varies from −20 to 80 °C, an average temperature coefficient of 19.6 ppm/°C is achieved.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics8070814</doi><orcidid>https://orcid.org/0000-0002-7508-2560</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2019-07, Vol.8 (7), p.814
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2548394619
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
Bipolar transistors
Circuits
Clocks & watches
CMOS
Design
Electric potential
Electronics
Energy gap
Error compensation
Medical equipment
Noise
Operational amplifiers
Power consumption
RC circuits
Semiconductor devices
Signal processing
Transistors
Voltage
title A High-Accuracy Ultra-Low-Power Offset-Cancelation On-Off Bandgap Reference for Implantable Medical Electronics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A16%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20High-Accuracy%20Ultra-Low-Power%20Offset-Cancelation%20On-Off%20Bandgap%20Reference%20for%20Implantable%20Medical%20Electronics&rft.jtitle=Electronics%20(Basel)&rft.au=Xu,%20Jiangtao&rft.date=2019-07-01&rft.volume=8&rft.issue=7&rft.spage=814&rft.pages=814-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics8070814&rft_dat=%3Cproquest_cross%3E2548394619%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548394619&rft_id=info:pmid/&rfr_iscdi=true