A High-Accuracy Ultra-Low-Power Offset-Cancelation On-Off Bandgap Reference for Implantable Medical Electronics
An ultra-low-power and high-accuracy on-off bandgap reference (BGR) is demonstrated in this paper for implantable medical electronics. The proposed BGR shows an average current consumption of 78 nA under 2.8 V supply and an output voltage of 1.17 V with an untrimmed accuracy of 0.69%. The on-off ban...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2019-07, Vol.8 (7), p.814 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 814 |
container_title | Electronics (Basel) |
container_volume | 8 |
creator | Xu, Jiangtao Wang, Yawei Wu, Minshun Zhang, Ruizhi Wei, Sufen Zhang, Guohe Yang, Cheng-Fu |
description | An ultra-low-power and high-accuracy on-off bandgap reference (BGR) is demonstrated in this paper for implantable medical electronics. The proposed BGR shows an average current consumption of 78 nA under 2.8 V supply and an output voltage of 1.17 V with an untrimmed accuracy of 0.69%. The on-off bandgap combined with sample-and-hold switched-RC filter is developed to reduce power consumption and noise. The on-off mechanism allows a relatively higher current in the sample phase to alleviate the process variation of bipolar transistors. To compensate the error caused by operational amplifier offset, the correlated double sampling strategy is adopted in the BGR. The proposed BGR is implemented in 0.35 μm standard CMOS process and occupies a total area of 0.063 mm2. Measurement results show that the circuit works properly in the supply voltage range of 1.8–3.2 V and achieves a line regulation of 0.59 mV/V. When the temperature varies from −20 to 80 °C, an average temperature coefficient of 19.6 ppm/°C is achieved. |
doi_str_mv | 10.3390/electronics8070814 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548394619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548394619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-151cfbfdee1f40b012e1aec20850344129b5b34b848f28236153b14540dacec23</originalsourceid><addsrcrecordid>eNplkE9LAzEQxYMoWGq_gKeA52j-bZsca6m2UKmIPS_Z7KRu2SZrklL67V2poOBc3jDzY97wELpl9F4ITR-gBZtj8I1Nik6oYvICDTidaKK55pd_-ms0SmlH-9JMKEEHKEzxotl-kKm1h2jsCW_aHA1ZhSN5DUeIeO1cgkxmxltoTW6Cx2tP-il-NL7emg6_gYMI_Rq7EPFy37XGZ1O1gF-gbqxp8fz3wRt05UybYPSjQ7R5mr_PFmS1fl7OpitiBdOZsIJZV7kagDlJK8o4MAOWU1VQISXjuioqISslleOKizErRMVkIWltbM-JIbo73-1i-DxAyuUuHKLvLUteSCW0HDPdU_xM2RhSiuDKLjZ7E08lo-V3tuX_bMUXEihvgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548394619</pqid></control><display><type>article</type><title>A High-Accuracy Ultra-Low-Power Offset-Cancelation On-Off Bandgap Reference for Implantable Medical Electronics</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Xu, Jiangtao ; Wang, Yawei ; Wu, Minshun ; Zhang, Ruizhi ; Wei, Sufen ; Zhang, Guohe ; Yang, Cheng-Fu</creator><creatorcontrib>Xu, Jiangtao ; Wang, Yawei ; Wu, Minshun ; Zhang, Ruizhi ; Wei, Sufen ; Zhang, Guohe ; Yang, Cheng-Fu</creatorcontrib><description>An ultra-low-power and high-accuracy on-off bandgap reference (BGR) is demonstrated in this paper for implantable medical electronics. The proposed BGR shows an average current consumption of 78 nA under 2.8 V supply and an output voltage of 1.17 V with an untrimmed accuracy of 0.69%. The on-off bandgap combined with sample-and-hold switched-RC filter is developed to reduce power consumption and noise. The on-off mechanism allows a relatively higher current in the sample phase to alleviate the process variation of bipolar transistors. To compensate the error caused by operational amplifier offset, the correlated double sampling strategy is adopted in the BGR. The proposed BGR is implemented in 0.35 μm standard CMOS process and occupies a total area of 0.063 mm2. Measurement results show that the circuit works properly in the supply voltage range of 1.8–3.2 V and achieves a line regulation of 0.59 mV/V. When the temperature varies from −20 to 80 °C, an average temperature coefficient of 19.6 ppm/°C is achieved.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics8070814</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Bipolar transistors ; Circuits ; Clocks & watches ; CMOS ; Design ; Electric potential ; Electronics ; Energy gap ; Error compensation ; Medical equipment ; Noise ; Operational amplifiers ; Power consumption ; RC circuits ; Semiconductor devices ; Signal processing ; Transistors ; Voltage</subject><ispartof>Electronics (Basel), 2019-07, Vol.8 (7), p.814</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-151cfbfdee1f40b012e1aec20850344129b5b34b848f28236153b14540dacec23</citedby><cites>FETCH-LOGICAL-c319t-151cfbfdee1f40b012e1aec20850344129b5b34b848f28236153b14540dacec23</cites><orcidid>0000-0002-7508-2560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, Jiangtao</creatorcontrib><creatorcontrib>Wang, Yawei</creatorcontrib><creatorcontrib>Wu, Minshun</creatorcontrib><creatorcontrib>Zhang, Ruizhi</creatorcontrib><creatorcontrib>Wei, Sufen</creatorcontrib><creatorcontrib>Zhang, Guohe</creatorcontrib><creatorcontrib>Yang, Cheng-Fu</creatorcontrib><title>A High-Accuracy Ultra-Low-Power Offset-Cancelation On-Off Bandgap Reference for Implantable Medical Electronics</title><title>Electronics (Basel)</title><description>An ultra-low-power and high-accuracy on-off bandgap reference (BGR) is demonstrated in this paper for implantable medical electronics. The proposed BGR shows an average current consumption of 78 nA under 2.8 V supply and an output voltage of 1.17 V with an untrimmed accuracy of 0.69%. The on-off bandgap combined with sample-and-hold switched-RC filter is developed to reduce power consumption and noise. The on-off mechanism allows a relatively higher current in the sample phase to alleviate the process variation of bipolar transistors. To compensate the error caused by operational amplifier offset, the correlated double sampling strategy is adopted in the BGR. The proposed BGR is implemented in 0.35 μm standard CMOS process and occupies a total area of 0.063 mm2. Measurement results show that the circuit works properly in the supply voltage range of 1.8–3.2 V and achieves a line regulation of 0.59 mV/V. When the temperature varies from −20 to 80 °C, an average temperature coefficient of 19.6 ppm/°C is achieved.</description><subject>Accuracy</subject><subject>Bipolar transistors</subject><subject>Circuits</subject><subject>Clocks & watches</subject><subject>CMOS</subject><subject>Design</subject><subject>Electric potential</subject><subject>Electronics</subject><subject>Energy gap</subject><subject>Error compensation</subject><subject>Medical equipment</subject><subject>Noise</subject><subject>Operational amplifiers</subject><subject>Power consumption</subject><subject>RC circuits</subject><subject>Semiconductor devices</subject><subject>Signal processing</subject><subject>Transistors</subject><subject>Voltage</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNplkE9LAzEQxYMoWGq_gKeA52j-bZsca6m2UKmIPS_Z7KRu2SZrklL67V2poOBc3jDzY97wELpl9F4ITR-gBZtj8I1Nik6oYvICDTidaKK55pd_-ms0SmlH-9JMKEEHKEzxotl-kKm1h2jsCW_aHA1ZhSN5DUeIeO1cgkxmxltoTW6Cx2tP-il-NL7emg6_gYMI_Rq7EPFy37XGZ1O1gF-gbqxp8fz3wRt05UybYPSjQ7R5mr_PFmS1fl7OpitiBdOZsIJZV7kagDlJK8o4MAOWU1VQISXjuioqISslleOKizErRMVkIWltbM-JIbo73-1i-DxAyuUuHKLvLUteSCW0HDPdU_xM2RhSiuDKLjZ7E08lo-V3tuX_bMUXEihvgg</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Xu, Jiangtao</creator><creator>Wang, Yawei</creator><creator>Wu, Minshun</creator><creator>Zhang, Ruizhi</creator><creator>Wei, Sufen</creator><creator>Zhang, Guohe</creator><creator>Yang, Cheng-Fu</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-7508-2560</orcidid></search><sort><creationdate>20190701</creationdate><title>A High-Accuracy Ultra-Low-Power Offset-Cancelation On-Off Bandgap Reference for Implantable Medical Electronics</title><author>Xu, Jiangtao ; Wang, Yawei ; Wu, Minshun ; Zhang, Ruizhi ; Wei, Sufen ; Zhang, Guohe ; Yang, Cheng-Fu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-151cfbfdee1f40b012e1aec20850344129b5b34b848f28236153b14540dacec23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Bipolar transistors</topic><topic>Circuits</topic><topic>Clocks & watches</topic><topic>CMOS</topic><topic>Design</topic><topic>Electric potential</topic><topic>Electronics</topic><topic>Energy gap</topic><topic>Error compensation</topic><topic>Medical equipment</topic><topic>Noise</topic><topic>Operational amplifiers</topic><topic>Power consumption</topic><topic>RC circuits</topic><topic>Semiconductor devices</topic><topic>Signal processing</topic><topic>Transistors</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jiangtao</creatorcontrib><creatorcontrib>Wang, Yawei</creatorcontrib><creatorcontrib>Wu, Minshun</creatorcontrib><creatorcontrib>Zhang, Ruizhi</creatorcontrib><creatorcontrib>Wei, Sufen</creatorcontrib><creatorcontrib>Zhang, Guohe</creatorcontrib><creatorcontrib>Yang, Cheng-Fu</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jiangtao</au><au>Wang, Yawei</au><au>Wu, Minshun</au><au>Zhang, Ruizhi</au><au>Wei, Sufen</au><au>Zhang, Guohe</au><au>Yang, Cheng-Fu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A High-Accuracy Ultra-Low-Power Offset-Cancelation On-Off Bandgap Reference for Implantable Medical Electronics</atitle><jtitle>Electronics (Basel)</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>8</volume><issue>7</issue><spage>814</spage><pages>814-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>An ultra-low-power and high-accuracy on-off bandgap reference (BGR) is demonstrated in this paper for implantable medical electronics. The proposed BGR shows an average current consumption of 78 nA under 2.8 V supply and an output voltage of 1.17 V with an untrimmed accuracy of 0.69%. The on-off bandgap combined with sample-and-hold switched-RC filter is developed to reduce power consumption and noise. The on-off mechanism allows a relatively higher current in the sample phase to alleviate the process variation of bipolar transistors. To compensate the error caused by operational amplifier offset, the correlated double sampling strategy is adopted in the BGR. The proposed BGR is implemented in 0.35 μm standard CMOS process and occupies a total area of 0.063 mm2. Measurement results show that the circuit works properly in the supply voltage range of 1.8–3.2 V and achieves a line regulation of 0.59 mV/V. When the temperature varies from −20 to 80 °C, an average temperature coefficient of 19.6 ppm/°C is achieved.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics8070814</doi><orcidid>https://orcid.org/0000-0002-7508-2560</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2019-07, Vol.8 (7), p.814 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2548394619 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Bipolar transistors Circuits Clocks & watches CMOS Design Electric potential Electronics Energy gap Error compensation Medical equipment Noise Operational amplifiers Power consumption RC circuits Semiconductor devices Signal processing Transistors Voltage |
title | A High-Accuracy Ultra-Low-Power Offset-Cancelation On-Off Bandgap Reference for Implantable Medical Electronics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A16%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20High-Accuracy%20Ultra-Low-Power%20Offset-Cancelation%20On-Off%20Bandgap%20Reference%20for%20Implantable%20Medical%20Electronics&rft.jtitle=Electronics%20(Basel)&rft.au=Xu,%20Jiangtao&rft.date=2019-07-01&rft.volume=8&rft.issue=7&rft.spage=814&rft.pages=814-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics8070814&rft_dat=%3Cproquest_cross%3E2548394619%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548394619&rft_id=info:pmid/&rfr_iscdi=true |