The Role of the Reduced Laplacian Renormalization in the Kinetic Energy Functional Development

The Laplacian of the electronic density diverges at the nuclear cusp, which complicates the development of Laplacian-level meta-GGA (LLMGGA) kinetic energy functionals for all-electron calculations. Here, we investigate some Laplacian renormalization methods, which avoid this divergence. We develope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computation 2019, Vol.7 (4), p.65
Hauptverfasser: Śmiga, Szymon, Constantin, Lucian A., Della Sala, Fabio, Fabiano, Eduardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 65
container_title Computation
container_volume 7
creator Śmiga, Szymon
Constantin, Lucian A.
Della Sala, Fabio
Fabiano, Eduardo
description The Laplacian of the electronic density diverges at the nuclear cusp, which complicates the development of Laplacian-level meta-GGA (LLMGGA) kinetic energy functionals for all-electron calculations. Here, we investigate some Laplacian renormalization methods, which avoid this divergence. We developed two different LLMGGA functionals, which improve the kinetic energy or the kinetic potential. We test these KE functionals in the context of Frozen-Density-Embedding (FDE), for a large palette of non-covalently interacting molecular systems. These functionals improve over the present state-of-the-art LLMGGA functionals for the FDE calculations.
doi_str_mv 10.3390/computation7040065
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548367582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548367582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7270cb958a9b12e2e49301561737d547f2bf292de50fe22396d312e1257e0ff73</originalsourceid><addsrcrecordid>eNplkE9LAzEQxYMoWGq_gKeA59X82Ww2R6mtigVB6tUlzU40ZTdZs1mhfnq3rQfBucxj5sfM4yF0Sck154rcmNB2Q9LJBS9JTkghTtCEEakyTpU8_aPP0azvt2QsRXnJyAS9rT8Av4QGcLA47TXUg4Ear3TXaOO0Hyc-xFY37vvwAjt_AJ-ch-QMXniI7zu8HLzZr3WD7-ALmtC14NMFOrO66WH226fodblYzx-y1fP94_x2lZnRVsokk8RslCi12lAGDHLFCRUFlVzWIpeWbSxTrAZBLDDGVVHzkaNMSCDWSj5FV8e7XQyfA_Sp2oYhjmb6iom85IUUJRspdqRMDH0fwVZddK2Ou4qSah9l9T9K_gNKuWmf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548367582</pqid></control><display><type>article</type><title>The Role of the Reduced Laplacian Renormalization in the Kinetic Energy Functional Development</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Śmiga, Szymon ; Constantin, Lucian A. ; Della Sala, Fabio ; Fabiano, Eduardo</creator><creatorcontrib>Śmiga, Szymon ; Constantin, Lucian A. ; Della Sala, Fabio ; Fabiano, Eduardo</creatorcontrib><description>The Laplacian of the electronic density diverges at the nuclear cusp, which complicates the development of Laplacian-level meta-GGA (LLMGGA) kinetic energy functionals for all-electron calculations. Here, we investigate some Laplacian renormalization methods, which avoid this divergence. We developed two different LLMGGA functionals, which improve the kinetic energy or the kinetic potential. We test these KE functionals in the context of Frozen-Density-Embedding (FDE), for a large palette of non-covalently interacting molecular systems. These functionals improve over the present state-of-the-art LLMGGA functionals for the FDE calculations.</description><identifier>ISSN: 2079-3197</identifier><identifier>EISSN: 2079-3197</identifier><identifier>DOI: 10.3390/computation7040065</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Density ; Energy ; Kinetic energy ; Mathematical analysis</subject><ispartof>Computation, 2019, Vol.7 (4), p.65</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7270cb958a9b12e2e49301561737d547f2bf292de50fe22396d312e1257e0ff73</citedby><cites>FETCH-LOGICAL-c319t-7270cb958a9b12e2e49301561737d547f2bf292de50fe22396d312e1257e0ff73</cites><orcidid>0000-0003-0940-8830 ; 0000-0002-5941-5409 ; 0000-0002-3990-669X ; 0000-0001-8923-3203</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Śmiga, Szymon</creatorcontrib><creatorcontrib>Constantin, Lucian A.</creatorcontrib><creatorcontrib>Della Sala, Fabio</creatorcontrib><creatorcontrib>Fabiano, Eduardo</creatorcontrib><title>The Role of the Reduced Laplacian Renormalization in the Kinetic Energy Functional Development</title><title>Computation</title><description>The Laplacian of the electronic density diverges at the nuclear cusp, which complicates the development of Laplacian-level meta-GGA (LLMGGA) kinetic energy functionals for all-electron calculations. Here, we investigate some Laplacian renormalization methods, which avoid this divergence. We developed two different LLMGGA functionals, which improve the kinetic energy or the kinetic potential. We test these KE functionals in the context of Frozen-Density-Embedding (FDE), for a large palette of non-covalently interacting molecular systems. These functionals improve over the present state-of-the-art LLMGGA functionals for the FDE calculations.</description><subject>Density</subject><subject>Energy</subject><subject>Kinetic energy</subject><subject>Mathematical analysis</subject><issn>2079-3197</issn><issn>2079-3197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNplkE9LAzEQxYMoWGq_gKeA59X82Ww2R6mtigVB6tUlzU40ZTdZs1mhfnq3rQfBucxj5sfM4yF0Sck154rcmNB2Q9LJBS9JTkghTtCEEakyTpU8_aPP0azvt2QsRXnJyAS9rT8Av4QGcLA47TXUg4Ear3TXaOO0Hyc-xFY37vvwAjt_AJ-ch-QMXniI7zu8HLzZr3WD7-ALmtC14NMFOrO66WH226fodblYzx-y1fP94_x2lZnRVsokk8RslCi12lAGDHLFCRUFlVzWIpeWbSxTrAZBLDDGVVHzkaNMSCDWSj5FV8e7XQyfA_Sp2oYhjmb6iom85IUUJRspdqRMDH0fwVZddK2Ou4qSah9l9T9K_gNKuWmf</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Śmiga, Szymon</creator><creator>Constantin, Lucian A.</creator><creator>Della Sala, Fabio</creator><creator>Fabiano, Eduardo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0940-8830</orcidid><orcidid>https://orcid.org/0000-0002-5941-5409</orcidid><orcidid>https://orcid.org/0000-0002-3990-669X</orcidid><orcidid>https://orcid.org/0000-0001-8923-3203</orcidid></search><sort><creationdate>2019</creationdate><title>The Role of the Reduced Laplacian Renormalization in the Kinetic Energy Functional Development</title><author>Śmiga, Szymon ; Constantin, Lucian A. ; Della Sala, Fabio ; Fabiano, Eduardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7270cb958a9b12e2e49301561737d547f2bf292de50fe22396d312e1257e0ff73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Density</topic><topic>Energy</topic><topic>Kinetic energy</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Śmiga, Szymon</creatorcontrib><creatorcontrib>Constantin, Lucian A.</creatorcontrib><creatorcontrib>Della Sala, Fabio</creatorcontrib><creatorcontrib>Fabiano, Eduardo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Śmiga, Szymon</au><au>Constantin, Lucian A.</au><au>Della Sala, Fabio</au><au>Fabiano, Eduardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of the Reduced Laplacian Renormalization in the Kinetic Energy Functional Development</atitle><jtitle>Computation</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>4</issue><spage>65</spage><pages>65-</pages><issn>2079-3197</issn><eissn>2079-3197</eissn><abstract>The Laplacian of the electronic density diverges at the nuclear cusp, which complicates the development of Laplacian-level meta-GGA (LLMGGA) kinetic energy functionals for all-electron calculations. Here, we investigate some Laplacian renormalization methods, which avoid this divergence. We developed two different LLMGGA functionals, which improve the kinetic energy or the kinetic potential. We test these KE functionals in the context of Frozen-Density-Embedding (FDE), for a large palette of non-covalently interacting molecular systems. These functionals improve over the present state-of-the-art LLMGGA functionals for the FDE calculations.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/computation7040065</doi><orcidid>https://orcid.org/0000-0003-0940-8830</orcidid><orcidid>https://orcid.org/0000-0002-5941-5409</orcidid><orcidid>https://orcid.org/0000-0002-3990-669X</orcidid><orcidid>https://orcid.org/0000-0001-8923-3203</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-3197
ispartof Computation, 2019, Vol.7 (4), p.65
issn 2079-3197
2079-3197
language eng
recordid cdi_proquest_journals_2548367582
source MDPI - Multidisciplinary Digital Publishing Institute; DOAJ Directory of Open Access Journals; EZB Electronic Journals Library
subjects Density
Energy
Kinetic energy
Mathematical analysis
title The Role of the Reduced Laplacian Renormalization in the Kinetic Energy Functional Development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T13%3A21%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20the%20Reduced%20Laplacian%20Renormalization%20in%20the%20Kinetic%20Energy%20Functional%20Development&rft.jtitle=Computation&rft.au=%C5%9Amiga,%20Szymon&rft.date=2019&rft.volume=7&rft.issue=4&rft.spage=65&rft.pages=65-&rft.issn=2079-3197&rft.eissn=2079-3197&rft_id=info:doi/10.3390/computation7040065&rft_dat=%3Cproquest_cross%3E2548367582%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548367582&rft_id=info:pmid/&rfr_iscdi=true