A Rapid Synthesis of Mesoporous Mn2O3 Nanoparticles for Supercapacitor Applications
Mn2O3 nanomaterials have been recently composing a variety of electrochemical systems like fuel cells, supercapacitors, etc., due to their high specific capacitance, low cost, abundance and environmentally benign nature. In this work, mesoporous Mn2O3 nanoparticles (NPs) were synthesized by manganes...
Gespeichert in:
Veröffentlicht in: | Coatings (Basel) 2019-10, Vol.9 (10), p.631 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 631 |
container_title | Coatings (Basel) |
container_volume | 9 |
creator | Son, You-Hyun Bui, Phuong T. M. Lee, Ha-Ryeon Akhtar, Mohammad Shaheer Shah, Deb Kumar Yang, O-Bong |
description | Mn2O3 nanomaterials have been recently composing a variety of electrochemical systems like fuel cells, supercapacitors, etc., due to their high specific capacitance, low cost, abundance and environmentally benign nature. In this work, mesoporous Mn2O3 nanoparticles (NPs) were synthesized by manganese acetate, citric acid and sodium hydroxide through a hydrothermal process at 150 °C for 3 h. The synthesized mesoporous Mn2O3 NPs were thoroughly characterized in terms of their morphology, surfaces, as well as their crystalline, electrochemical and electrochemical properties. For supercapacitor applications, the synthesized mesoporous Mn2O3 NP-based electrode accomplished an excellent specific capacitance (Csp) of 460 F·g−1 at 10 mV·s−1 with a good electrocatalytic activity by observing good electrochemical properties in a 6 M KOH electrolyte. The excellent Csp might be explained by the improvement of the surface area, porous surface and uniformity, which might favor the generation of large active sites and a fast ionic transport over the good electrocatalytic surface of the Mn2O3 electrode. The fabricated supercapacitors exhibited a good cycling stability after 5000 cycles by maintaining ~83% of Csp. |
doi_str_mv | 10.3390/coatings9100631 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548336526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548336526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-7316b4f880e39c70d8aa1190daf7f8b5079e1a6edc3c83475f804cec872c80ff3</originalsourceid><addsrcrecordid>eNpdkM1LAzEQxYMoWGrPXgOe10529iM5luIXtBasnpc0m2hK3cTM7qH_vSv1IM7lzYMfM4_H2LWAW0QFcxN077t3UgKgQnHGJjnUKqsKkZ__2S_ZjGgP4yiBUqgJ2y74i46-5dtj139Y8sSD42tLIYYUBuLrLt8gf9ZdiDr13hwscRcS3w7RJqOjNr4f7SLGgzdjiNDRFbtw-kB29qtT9nZ_97p8zFabh6flYpUZFNBnNYpqVzgpwaIyNbRSayEUtNrVTu7KMbQVurKtQSOxqEsnoTDWyDo3EpzDKbs53Y0pfA2W-mYfhtSNL5u8LCRiVebVSM1PlEmBKFnXxOQ_dTo2Apqf8pp_5eE30FFkJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548336526</pqid></control><display><type>article</type><title>A Rapid Synthesis of Mesoporous Mn2O3 Nanoparticles for Supercapacitor Applications</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Son, You-Hyun ; Bui, Phuong T. M. ; Lee, Ha-Ryeon ; Akhtar, Mohammad Shaheer ; Shah, Deb Kumar ; Yang, O-Bong</creator><creatorcontrib>Son, You-Hyun ; Bui, Phuong T. M. ; Lee, Ha-Ryeon ; Akhtar, Mohammad Shaheer ; Shah, Deb Kumar ; Yang, O-Bong</creatorcontrib><description>Mn2O3 nanomaterials have been recently composing a variety of electrochemical systems like fuel cells, supercapacitors, etc., due to their high specific capacitance, low cost, abundance and environmentally benign nature. In this work, mesoporous Mn2O3 nanoparticles (NPs) were synthesized by manganese acetate, citric acid and sodium hydroxide through a hydrothermal process at 150 °C for 3 h. The synthesized mesoporous Mn2O3 NPs were thoroughly characterized in terms of their morphology, surfaces, as well as their crystalline, electrochemical and electrochemical properties. For supercapacitor applications, the synthesized mesoporous Mn2O3 NP-based electrode accomplished an excellent specific capacitance (Csp) of 460 F·g−1 at 10 mV·s−1 with a good electrocatalytic activity by observing good electrochemical properties in a 6 M KOH electrolyte. The excellent Csp might be explained by the improvement of the surface area, porous surface and uniformity, which might favor the generation of large active sites and a fast ionic transport over the good electrocatalytic surface of the Mn2O3 electrode. The fabricated supercapacitors exhibited a good cycling stability after 5000 cycles by maintaining ~83% of Csp.</description><identifier>ISSN: 2079-6412</identifier><identifier>EISSN: 2079-6412</identifier><identifier>DOI: 10.3390/coatings9100631</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Batteries ; Capacitance ; Citric acid ; Electrochemical analysis ; Electrodes ; Electrolytes ; Electrolytic cells ; Fuel cells ; Manganese oxides ; Metal oxides ; Morphology ; Nanomaterials ; Nanoparticles ; Sodium hydroxide ; Spectrum analysis ; Supercapacitors ; Synthesis ; Transmission electron microscopy</subject><ispartof>Coatings (Basel), 2019-10, Vol.9 (10), p.631</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-7316b4f880e39c70d8aa1190daf7f8b5079e1a6edc3c83475f804cec872c80ff3</citedby><cites>FETCH-LOGICAL-c310t-7316b4f880e39c70d8aa1190daf7f8b5079e1a6edc3c83475f804cec872c80ff3</cites><orcidid>0000-0001-7698-2619</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Son, You-Hyun</creatorcontrib><creatorcontrib>Bui, Phuong T. M.</creatorcontrib><creatorcontrib>Lee, Ha-Ryeon</creatorcontrib><creatorcontrib>Akhtar, Mohammad Shaheer</creatorcontrib><creatorcontrib>Shah, Deb Kumar</creatorcontrib><creatorcontrib>Yang, O-Bong</creatorcontrib><title>A Rapid Synthesis of Mesoporous Mn2O3 Nanoparticles for Supercapacitor Applications</title><title>Coatings (Basel)</title><description>Mn2O3 nanomaterials have been recently composing a variety of electrochemical systems like fuel cells, supercapacitors, etc., due to their high specific capacitance, low cost, abundance and environmentally benign nature. In this work, mesoporous Mn2O3 nanoparticles (NPs) were synthesized by manganese acetate, citric acid and sodium hydroxide through a hydrothermal process at 150 °C for 3 h. The synthesized mesoporous Mn2O3 NPs were thoroughly characterized in terms of their morphology, surfaces, as well as their crystalline, electrochemical and electrochemical properties. For supercapacitor applications, the synthesized mesoporous Mn2O3 NP-based electrode accomplished an excellent specific capacitance (Csp) of 460 F·g−1 at 10 mV·s−1 with a good electrocatalytic activity by observing good electrochemical properties in a 6 M KOH electrolyte. The excellent Csp might be explained by the improvement of the surface area, porous surface and uniformity, which might favor the generation of large active sites and a fast ionic transport over the good electrocatalytic surface of the Mn2O3 electrode. The fabricated supercapacitors exhibited a good cycling stability after 5000 cycles by maintaining ~83% of Csp.</description><subject>Batteries</subject><subject>Capacitance</subject><subject>Citric acid</subject><subject>Electrochemical analysis</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Fuel cells</subject><subject>Manganese oxides</subject><subject>Metal oxides</subject><subject>Morphology</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Sodium hydroxide</subject><subject>Spectrum analysis</subject><subject>Supercapacitors</subject><subject>Synthesis</subject><subject>Transmission electron microscopy</subject><issn>2079-6412</issn><issn>2079-6412</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkM1LAzEQxYMoWGrPXgOe10529iM5luIXtBasnpc0m2hK3cTM7qH_vSv1IM7lzYMfM4_H2LWAW0QFcxN077t3UgKgQnHGJjnUKqsKkZ__2S_ZjGgP4yiBUqgJ2y74i46-5dtj139Y8sSD42tLIYYUBuLrLt8gf9ZdiDr13hwscRcS3w7RJqOjNr4f7SLGgzdjiNDRFbtw-kB29qtT9nZ_97p8zFabh6flYpUZFNBnNYpqVzgpwaIyNbRSayEUtNrVTu7KMbQVurKtQSOxqEsnoTDWyDo3EpzDKbs53Y0pfA2W-mYfhtSNL5u8LCRiVebVSM1PlEmBKFnXxOQ_dTo2Apqf8pp_5eE30FFkJg</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Son, You-Hyun</creator><creator>Bui, Phuong T. M.</creator><creator>Lee, Ha-Ryeon</creator><creator>Akhtar, Mohammad Shaheer</creator><creator>Shah, Deb Kumar</creator><creator>Yang, O-Bong</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-7698-2619</orcidid></search><sort><creationdate>20191001</creationdate><title>A Rapid Synthesis of Mesoporous Mn2O3 Nanoparticles for Supercapacitor Applications</title><author>Son, You-Hyun ; Bui, Phuong T. M. ; Lee, Ha-Ryeon ; Akhtar, Mohammad Shaheer ; Shah, Deb Kumar ; Yang, O-Bong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-7316b4f880e39c70d8aa1190daf7f8b5079e1a6edc3c83475f804cec872c80ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Batteries</topic><topic>Capacitance</topic><topic>Citric acid</topic><topic>Electrochemical analysis</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Fuel cells</topic><topic>Manganese oxides</topic><topic>Metal oxides</topic><topic>Morphology</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Sodium hydroxide</topic><topic>Spectrum analysis</topic><topic>Supercapacitors</topic><topic>Synthesis</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Son, You-Hyun</creatorcontrib><creatorcontrib>Bui, Phuong T. M.</creatorcontrib><creatorcontrib>Lee, Ha-Ryeon</creatorcontrib><creatorcontrib>Akhtar, Mohammad Shaheer</creatorcontrib><creatorcontrib>Shah, Deb Kumar</creatorcontrib><creatorcontrib>Yang, O-Bong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Coatings (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Son, You-Hyun</au><au>Bui, Phuong T. M.</au><au>Lee, Ha-Ryeon</au><au>Akhtar, Mohammad Shaheer</au><au>Shah, Deb Kumar</au><au>Yang, O-Bong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Rapid Synthesis of Mesoporous Mn2O3 Nanoparticles for Supercapacitor Applications</atitle><jtitle>Coatings (Basel)</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>9</volume><issue>10</issue><spage>631</spage><pages>631-</pages><issn>2079-6412</issn><eissn>2079-6412</eissn><abstract>Mn2O3 nanomaterials have been recently composing a variety of electrochemical systems like fuel cells, supercapacitors, etc., due to their high specific capacitance, low cost, abundance and environmentally benign nature. In this work, mesoporous Mn2O3 nanoparticles (NPs) were synthesized by manganese acetate, citric acid and sodium hydroxide through a hydrothermal process at 150 °C for 3 h. The synthesized mesoporous Mn2O3 NPs were thoroughly characterized in terms of their morphology, surfaces, as well as their crystalline, electrochemical and electrochemical properties. For supercapacitor applications, the synthesized mesoporous Mn2O3 NP-based electrode accomplished an excellent specific capacitance (Csp) of 460 F·g−1 at 10 mV·s−1 with a good electrocatalytic activity by observing good electrochemical properties in a 6 M KOH electrolyte. The excellent Csp might be explained by the improvement of the surface area, porous surface and uniformity, which might favor the generation of large active sites and a fast ionic transport over the good electrocatalytic surface of the Mn2O3 electrode. The fabricated supercapacitors exhibited a good cycling stability after 5000 cycles by maintaining ~83% of Csp.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/coatings9100631</doi><orcidid>https://orcid.org/0000-0001-7698-2619</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-6412 |
ispartof | Coatings (Basel), 2019-10, Vol.9 (10), p.631 |
issn | 2079-6412 2079-6412 |
language | eng |
recordid | cdi_proquest_journals_2548336526 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Batteries Capacitance Citric acid Electrochemical analysis Electrodes Electrolytes Electrolytic cells Fuel cells Manganese oxides Metal oxides Morphology Nanomaterials Nanoparticles Sodium hydroxide Spectrum analysis Supercapacitors Synthesis Transmission electron microscopy |
title | A Rapid Synthesis of Mesoporous Mn2O3 Nanoparticles for Supercapacitor Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A48%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Rapid%20Synthesis%20of%20Mesoporous%20Mn2O3%20Nanoparticles%20for%20Supercapacitor%20Applications&rft.jtitle=Coatings%20(Basel)&rft.au=Son,%20You-Hyun&rft.date=2019-10-01&rft.volume=9&rft.issue=10&rft.spage=631&rft.pages=631-&rft.issn=2079-6412&rft.eissn=2079-6412&rft_id=info:doi/10.3390/coatings9100631&rft_dat=%3Cproquest_cross%3E2548336526%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548336526&rft_id=info:pmid/&rfr_iscdi=true |