Effect of Transglutaminase Cross-Linking in Protein Isolates from a Mixture of Two Quinoa Varieties with Chitosan on the Physicochemical Properties of Edible Films

The growing demand for minimally processed foods with a long shelf life and environmentally friendly materials has forced industry to develop new technologies for food preservation and handling. The use of edible films has emerged as an alternative solution to this problem, and mixtures of carbohydr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coatings (Basel) 2019, Vol.9 (11), p.736
Hauptverfasser: Escamilla-García, Monserrat, Delgado-Sánchez, Luis Felipe, Ríos-Romo, Raquel Adriana, García-Almendárez, Blanca E., Calderón-Domínguez, Georgina, Méndez-Méndez, Juan Vicente, Amaro-Reyes, Aldo, Di Pierro, Prospero, Regalado-González, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 736
container_title Coatings (Basel)
container_volume 9
creator Escamilla-García, Monserrat
Delgado-Sánchez, Luis Felipe
Ríos-Romo, Raquel Adriana
García-Almendárez, Blanca E.
Calderón-Domínguez, Georgina
Méndez-Méndez, Juan Vicente
Amaro-Reyes, Aldo
Di Pierro, Prospero
Regalado-González, Carlos
description The growing demand for minimally processed foods with a long shelf life and environmentally friendly materials has forced industry to develop new technologies for food preservation and handling. The use of edible films has emerged as an alternative solution to this problem, and mixtures of carbohydrates and proteins, may be formulated to improve their properties. The objective of this work was to evaluate the effect of protein cross-linking with transglutaminase (TG) of two varieties of quinoa protein isolate (Chenopodium quinoa) [Willd (QW), and Pasankalla (QP)] on the physicochemical and barrier properties of edible films based on chitosan (CT)-quinoa protein. The evaluated properties were water vapor permeability (WVP), solubility, adsorption, roughness determined by atomic force microscopy, and the interactions among the main film components determined by Raman spectroscopy. The results indicated that TG interacted with lysine of QW and QP. CT:QW (1:5, w/w) showed the lowest solubility (14.02 ± 2.17% w/w). WVP varied with the composition of the mixture. The WVP of CT:quinoa protein ranged from 2.85 to 9.95 × 10−11 g cm Pa−1 cm−2 s−1 without TG, whereas adding TG reduced this range to 2.42–4.69 × 10−11 g cm Pa−1 cm−2 s−1. The addition of TG to CT:QP (1:10, w/w) reduced the film surface roughness from 8.0 ± 0.5 nm to 4.4 ± 0.3 nm. According to the sorption isotherm, the addition of TG to CT-QW films improved their stability [monolayer (Xm) = 0.13 ± 0.02 %]. Films with a higher amount of cross-linking showed the highest improvement in the evaluated physical properties, but interactions among proteins that were catalyzed by TG depended on the protein source and profile.
doi_str_mv 10.3390/coatings9110736
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548333525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548333525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-bddd97251fced3364dd826a1acbc1abccbc329148d31aed2f9e6d02cdd9ee713</originalsourceid><addsrcrecordid>eNpdkU1LAzEQhhdRsNSevQY8r83Hfh6ltFqoWKF4XbLJbDd1N6lJFu3v8Y-ath7EubxzeOYZmImiW4LvGSvxVBjuld66khCcs-wiGlGcl3GWEHr5p7-OJs7tcKiSsIKUo-h73jQgPDIN2liu3bYbPO-V5g7QzBrn4pXS70GNlEZrazyEXDrTcQ8ONdb0iKNn9eUHCyfJp0Gvg9KGozduFXgVsE_lWzRrlTeOa2Q08i2gdXtwShjRQq8E747yPdgTHzxzqeoO0EJ1vbuJrhreOZj85jjaLOab2VO8enlczh5WsWAE-7iWUpY5TUkjQDKWJVIWNOOEi1oQXosQjJYkKSQjHCRtSsgkpiJMAeSEjaO7s3ZvzccAzlc7M1gdNlY0TQrGWErTQE3PlDhex0JT7a3quT1UBFfHX1T_fsF-ABrIgt4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548333525</pqid></control><display><type>article</type><title>Effect of Transglutaminase Cross-Linking in Protein Isolates from a Mixture of Two Quinoa Varieties with Chitosan on the Physicochemical Properties of Edible Films</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Escamilla-García, Monserrat ; Delgado-Sánchez, Luis Felipe ; Ríos-Romo, Raquel Adriana ; García-Almendárez, Blanca E. ; Calderón-Domínguez, Georgina ; Méndez-Méndez, Juan Vicente ; Amaro-Reyes, Aldo ; Di Pierro, Prospero ; Regalado-González, Carlos</creator><creatorcontrib>Escamilla-García, Monserrat ; Delgado-Sánchez, Luis Felipe ; Ríos-Romo, Raquel Adriana ; García-Almendárez, Blanca E. ; Calderón-Domínguez, Georgina ; Méndez-Méndez, Juan Vicente ; Amaro-Reyes, Aldo ; Di Pierro, Prospero ; Regalado-González, Carlos</creatorcontrib><description>The growing demand for minimally processed foods with a long shelf life and environmentally friendly materials has forced industry to develop new technologies for food preservation and handling. The use of edible films has emerged as an alternative solution to this problem, and mixtures of carbohydrates and proteins, may be formulated to improve their properties. The objective of this work was to evaluate the effect of protein cross-linking with transglutaminase (TG) of two varieties of quinoa protein isolate (Chenopodium quinoa) [Willd (QW), and Pasankalla (QP)] on the physicochemical and barrier properties of edible films based on chitosan (CT)-quinoa protein. The evaluated properties were water vapor permeability (WVP), solubility, adsorption, roughness determined by atomic force microscopy, and the interactions among the main film components determined by Raman spectroscopy. The results indicated that TG interacted with lysine of QW and QP. CT:QW (1:5, w/w) showed the lowest solubility (14.02 ± 2.17% w/w). WVP varied with the composition of the mixture. The WVP of CT:quinoa protein ranged from 2.85 to 9.95 × 10−11 g cm Pa−1 cm−2 s−1 without TG, whereas adding TG reduced this range to 2.42–4.69 × 10−11 g cm Pa−1 cm−2 s−1. The addition of TG to CT:QP (1:10, w/w) reduced the film surface roughness from 8.0 ± 0.5 nm to 4.4 ± 0.3 nm. According to the sorption isotherm, the addition of TG to CT-QW films improved their stability [monolayer (Xm) = 0.13 ± 0.02 %]. Films with a higher amount of cross-linking showed the highest improvement in the evaluated physical properties, but interactions among proteins that were catalyzed by TG depended on the protein source and profile.</description><identifier>ISSN: 2079-6412</identifier><identifier>EISSN: 2079-6412</identifier><identifier>DOI: 10.3390/coatings9110736</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Atomic force microscopy ; Carbohydrates ; Chitosan ; Crosslinking ; Industrial development ; Lipids ; Lysine ; Mechanical properties ; New technology ; Permeability ; Physical properties ; Polymers ; Proteins ; Quinoa ; Raman spectroscopy ; Shelf life ; Solubility ; Surface roughness ; Water vapor</subject><ispartof>Coatings (Basel), 2019, Vol.9 (11), p.736</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-bddd97251fced3364dd826a1acbc1abccbc329148d31aed2f9e6d02cdd9ee713</citedby><cites>FETCH-LOGICAL-c310t-bddd97251fced3364dd826a1acbc1abccbc329148d31aed2f9e6d02cdd9ee713</cites><orcidid>0000-0002-3025-0313 ; 0000-0001-5557-275X ; 0000-0001-6520-5742</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Escamilla-García, Monserrat</creatorcontrib><creatorcontrib>Delgado-Sánchez, Luis Felipe</creatorcontrib><creatorcontrib>Ríos-Romo, Raquel Adriana</creatorcontrib><creatorcontrib>García-Almendárez, Blanca E.</creatorcontrib><creatorcontrib>Calderón-Domínguez, Georgina</creatorcontrib><creatorcontrib>Méndez-Méndez, Juan Vicente</creatorcontrib><creatorcontrib>Amaro-Reyes, Aldo</creatorcontrib><creatorcontrib>Di Pierro, Prospero</creatorcontrib><creatorcontrib>Regalado-González, Carlos</creatorcontrib><title>Effect of Transglutaminase Cross-Linking in Protein Isolates from a Mixture of Two Quinoa Varieties with Chitosan on the Physicochemical Properties of Edible Films</title><title>Coatings (Basel)</title><description>The growing demand for minimally processed foods with a long shelf life and environmentally friendly materials has forced industry to develop new technologies for food preservation and handling. The use of edible films has emerged as an alternative solution to this problem, and mixtures of carbohydrates and proteins, may be formulated to improve their properties. The objective of this work was to evaluate the effect of protein cross-linking with transglutaminase (TG) of two varieties of quinoa protein isolate (Chenopodium quinoa) [Willd (QW), and Pasankalla (QP)] on the physicochemical and barrier properties of edible films based on chitosan (CT)-quinoa protein. The evaluated properties were water vapor permeability (WVP), solubility, adsorption, roughness determined by atomic force microscopy, and the interactions among the main film components determined by Raman spectroscopy. The results indicated that TG interacted with lysine of QW and QP. CT:QW (1:5, w/w) showed the lowest solubility (14.02 ± 2.17% w/w). WVP varied with the composition of the mixture. The WVP of CT:quinoa protein ranged from 2.85 to 9.95 × 10−11 g cm Pa−1 cm−2 s−1 without TG, whereas adding TG reduced this range to 2.42–4.69 × 10−11 g cm Pa−1 cm−2 s−1. The addition of TG to CT:QP (1:10, w/w) reduced the film surface roughness from 8.0 ± 0.5 nm to 4.4 ± 0.3 nm. According to the sorption isotherm, the addition of TG to CT-QW films improved their stability [monolayer (Xm) = 0.13 ± 0.02 %]. Films with a higher amount of cross-linking showed the highest improvement in the evaluated physical properties, but interactions among proteins that were catalyzed by TG depended on the protein source and profile.</description><subject>Atomic force microscopy</subject><subject>Carbohydrates</subject><subject>Chitosan</subject><subject>Crosslinking</subject><subject>Industrial development</subject><subject>Lipids</subject><subject>Lysine</subject><subject>Mechanical properties</subject><subject>New technology</subject><subject>Permeability</subject><subject>Physical properties</subject><subject>Polymers</subject><subject>Proteins</subject><subject>Quinoa</subject><subject>Raman spectroscopy</subject><subject>Shelf life</subject><subject>Solubility</subject><subject>Surface roughness</subject><subject>Water vapor</subject><issn>2079-6412</issn><issn>2079-6412</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkU1LAzEQhhdRsNSevQY8r83Hfh6ltFqoWKF4XbLJbDd1N6lJFu3v8Y-ath7EubxzeOYZmImiW4LvGSvxVBjuld66khCcs-wiGlGcl3GWEHr5p7-OJs7tcKiSsIKUo-h73jQgPDIN2liu3bYbPO-V5g7QzBrn4pXS70GNlEZrazyEXDrTcQ8ONdb0iKNn9eUHCyfJp0Gvg9KGozduFXgVsE_lWzRrlTeOa2Q08i2gdXtwShjRQq8E747yPdgTHzxzqeoO0EJ1vbuJrhreOZj85jjaLOab2VO8enlczh5WsWAE-7iWUpY5TUkjQDKWJVIWNOOEi1oQXosQjJYkKSQjHCRtSsgkpiJMAeSEjaO7s3ZvzccAzlc7M1gdNlY0TQrGWErTQE3PlDhex0JT7a3quT1UBFfHX1T_fsF-ABrIgt4</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Escamilla-García, Monserrat</creator><creator>Delgado-Sánchez, Luis Felipe</creator><creator>Ríos-Romo, Raquel Adriana</creator><creator>García-Almendárez, Blanca E.</creator><creator>Calderón-Domínguez, Georgina</creator><creator>Méndez-Méndez, Juan Vicente</creator><creator>Amaro-Reyes, Aldo</creator><creator>Di Pierro, Prospero</creator><creator>Regalado-González, Carlos</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-3025-0313</orcidid><orcidid>https://orcid.org/0000-0001-5557-275X</orcidid><orcidid>https://orcid.org/0000-0001-6520-5742</orcidid></search><sort><creationdate>2019</creationdate><title>Effect of Transglutaminase Cross-Linking in Protein Isolates from a Mixture of Two Quinoa Varieties with Chitosan on the Physicochemical Properties of Edible Films</title><author>Escamilla-García, Monserrat ; Delgado-Sánchez, Luis Felipe ; Ríos-Romo, Raquel Adriana ; García-Almendárez, Blanca E. ; Calderón-Domínguez, Georgina ; Méndez-Méndez, Juan Vicente ; Amaro-Reyes, Aldo ; Di Pierro, Prospero ; Regalado-González, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-bddd97251fced3364dd826a1acbc1abccbc329148d31aed2f9e6d02cdd9ee713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atomic force microscopy</topic><topic>Carbohydrates</topic><topic>Chitosan</topic><topic>Crosslinking</topic><topic>Industrial development</topic><topic>Lipids</topic><topic>Lysine</topic><topic>Mechanical properties</topic><topic>New technology</topic><topic>Permeability</topic><topic>Physical properties</topic><topic>Polymers</topic><topic>Proteins</topic><topic>Quinoa</topic><topic>Raman spectroscopy</topic><topic>Shelf life</topic><topic>Solubility</topic><topic>Surface roughness</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Escamilla-García, Monserrat</creatorcontrib><creatorcontrib>Delgado-Sánchez, Luis Felipe</creatorcontrib><creatorcontrib>Ríos-Romo, Raquel Adriana</creatorcontrib><creatorcontrib>García-Almendárez, Blanca E.</creatorcontrib><creatorcontrib>Calderón-Domínguez, Georgina</creatorcontrib><creatorcontrib>Méndez-Méndez, Juan Vicente</creatorcontrib><creatorcontrib>Amaro-Reyes, Aldo</creatorcontrib><creatorcontrib>Di Pierro, Prospero</creatorcontrib><creatorcontrib>Regalado-González, Carlos</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Coatings (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Escamilla-García, Monserrat</au><au>Delgado-Sánchez, Luis Felipe</au><au>Ríos-Romo, Raquel Adriana</au><au>García-Almendárez, Blanca E.</au><au>Calderón-Domínguez, Georgina</au><au>Méndez-Méndez, Juan Vicente</au><au>Amaro-Reyes, Aldo</au><au>Di Pierro, Prospero</au><au>Regalado-González, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Transglutaminase Cross-Linking in Protein Isolates from a Mixture of Two Quinoa Varieties with Chitosan on the Physicochemical Properties of Edible Films</atitle><jtitle>Coatings (Basel)</jtitle><date>2019</date><risdate>2019</risdate><volume>9</volume><issue>11</issue><spage>736</spage><pages>736-</pages><issn>2079-6412</issn><eissn>2079-6412</eissn><abstract>The growing demand for minimally processed foods with a long shelf life and environmentally friendly materials has forced industry to develop new technologies for food preservation and handling. The use of edible films has emerged as an alternative solution to this problem, and mixtures of carbohydrates and proteins, may be formulated to improve their properties. The objective of this work was to evaluate the effect of protein cross-linking with transglutaminase (TG) of two varieties of quinoa protein isolate (Chenopodium quinoa) [Willd (QW), and Pasankalla (QP)] on the physicochemical and barrier properties of edible films based on chitosan (CT)-quinoa protein. The evaluated properties were water vapor permeability (WVP), solubility, adsorption, roughness determined by atomic force microscopy, and the interactions among the main film components determined by Raman spectroscopy. The results indicated that TG interacted with lysine of QW and QP. CT:QW (1:5, w/w) showed the lowest solubility (14.02 ± 2.17% w/w). WVP varied with the composition of the mixture. The WVP of CT:quinoa protein ranged from 2.85 to 9.95 × 10−11 g cm Pa−1 cm−2 s−1 without TG, whereas adding TG reduced this range to 2.42–4.69 × 10−11 g cm Pa−1 cm−2 s−1. The addition of TG to CT:QP (1:10, w/w) reduced the film surface roughness from 8.0 ± 0.5 nm to 4.4 ± 0.3 nm. According to the sorption isotherm, the addition of TG to CT-QW films improved their stability [monolayer (Xm) = 0.13 ± 0.02 %]. Films with a higher amount of cross-linking showed the highest improvement in the evaluated physical properties, but interactions among proteins that were catalyzed by TG depended on the protein source and profile.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/coatings9110736</doi><orcidid>https://orcid.org/0000-0002-3025-0313</orcidid><orcidid>https://orcid.org/0000-0001-5557-275X</orcidid><orcidid>https://orcid.org/0000-0001-6520-5742</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-6412
ispartof Coatings (Basel), 2019, Vol.9 (11), p.736
issn 2079-6412
2079-6412
language eng
recordid cdi_proquest_journals_2548333525
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Atomic force microscopy
Carbohydrates
Chitosan
Crosslinking
Industrial development
Lipids
Lysine
Mechanical properties
New technology
Permeability
Physical properties
Polymers
Proteins
Quinoa
Raman spectroscopy
Shelf life
Solubility
Surface roughness
Water vapor
title Effect of Transglutaminase Cross-Linking in Protein Isolates from a Mixture of Two Quinoa Varieties with Chitosan on the Physicochemical Properties of Edible Films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A23%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Transglutaminase%20Cross-Linking%20in%20Protein%20Isolates%20from%20a%20Mixture%20of%20Two%20Quinoa%20Varieties%20with%20Chitosan%20on%20the%20Physicochemical%20Properties%20of%20Edible%20Films&rft.jtitle=Coatings%20(Basel)&rft.au=Escamilla-Garc%C3%ADa,%20Monserrat&rft.date=2019&rft.volume=9&rft.issue=11&rft.spage=736&rft.pages=736-&rft.issn=2079-6412&rft.eissn=2079-6412&rft_id=info:doi/10.3390/coatings9110736&rft_dat=%3Cproquest_cross%3E2548333525%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548333525&rft_id=info:pmid/&rfr_iscdi=true