Effect of Transglutaminase Cross-Linking in Protein Isolates from a Mixture of Two Quinoa Varieties with Chitosan on the Physicochemical Properties of Edible Films
The growing demand for minimally processed foods with a long shelf life and environmentally friendly materials has forced industry to develop new technologies for food preservation and handling. The use of edible films has emerged as an alternative solution to this problem, and mixtures of carbohydr...
Gespeichert in:
Veröffentlicht in: | Coatings (Basel) 2019, Vol.9 (11), p.736 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 736 |
container_title | Coatings (Basel) |
container_volume | 9 |
creator | Escamilla-García, Monserrat Delgado-Sánchez, Luis Felipe Ríos-Romo, Raquel Adriana García-Almendárez, Blanca E. Calderón-Domínguez, Georgina Méndez-Méndez, Juan Vicente Amaro-Reyes, Aldo Di Pierro, Prospero Regalado-González, Carlos |
description | The growing demand for minimally processed foods with a long shelf life and environmentally friendly materials has forced industry to develop new technologies for food preservation and handling. The use of edible films has emerged as an alternative solution to this problem, and mixtures of carbohydrates and proteins, may be formulated to improve their properties. The objective of this work was to evaluate the effect of protein cross-linking with transglutaminase (TG) of two varieties of quinoa protein isolate (Chenopodium quinoa) [Willd (QW), and Pasankalla (QP)] on the physicochemical and barrier properties of edible films based on chitosan (CT)-quinoa protein. The evaluated properties were water vapor permeability (WVP), solubility, adsorption, roughness determined by atomic force microscopy, and the interactions among the main film components determined by Raman spectroscopy. The results indicated that TG interacted with lysine of QW and QP. CT:QW (1:5, w/w) showed the lowest solubility (14.02 ± 2.17% w/w). WVP varied with the composition of the mixture. The WVP of CT:quinoa protein ranged from 2.85 to 9.95 × 10−11 g cm Pa−1 cm−2 s−1 without TG, whereas adding TG reduced this range to 2.42–4.69 × 10−11 g cm Pa−1 cm−2 s−1. The addition of TG to CT:QP (1:10, w/w) reduced the film surface roughness from 8.0 ± 0.5 nm to 4.4 ± 0.3 nm. According to the sorption isotherm, the addition of TG to CT-QW films improved their stability [monolayer (Xm) = 0.13 ± 0.02 %]. Films with a higher amount of cross-linking showed the highest improvement in the evaluated physical properties, but interactions among proteins that were catalyzed by TG depended on the protein source and profile. |
doi_str_mv | 10.3390/coatings9110736 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548333525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548333525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-bddd97251fced3364dd826a1acbc1abccbc329148d31aed2f9e6d02cdd9ee713</originalsourceid><addsrcrecordid>eNpdkU1LAzEQhhdRsNSevQY8r83Hfh6ltFqoWKF4XbLJbDd1N6lJFu3v8Y-ath7EubxzeOYZmImiW4LvGSvxVBjuld66khCcs-wiGlGcl3GWEHr5p7-OJs7tcKiSsIKUo-h73jQgPDIN2liu3bYbPO-V5g7QzBrn4pXS70GNlEZrazyEXDrTcQ8ONdb0iKNn9eUHCyfJp0Gvg9KGozduFXgVsE_lWzRrlTeOa2Q08i2gdXtwShjRQq8E747yPdgTHzxzqeoO0EJ1vbuJrhreOZj85jjaLOab2VO8enlczh5WsWAE-7iWUpY5TUkjQDKWJVIWNOOEi1oQXosQjJYkKSQjHCRtSsgkpiJMAeSEjaO7s3ZvzccAzlc7M1gdNlY0TQrGWErTQE3PlDhex0JT7a3quT1UBFfHX1T_fsF-ABrIgt4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548333525</pqid></control><display><type>article</type><title>Effect of Transglutaminase Cross-Linking in Protein Isolates from a Mixture of Two Quinoa Varieties with Chitosan on the Physicochemical Properties of Edible Films</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Escamilla-García, Monserrat ; Delgado-Sánchez, Luis Felipe ; Ríos-Romo, Raquel Adriana ; García-Almendárez, Blanca E. ; Calderón-Domínguez, Georgina ; Méndez-Méndez, Juan Vicente ; Amaro-Reyes, Aldo ; Di Pierro, Prospero ; Regalado-González, Carlos</creator><creatorcontrib>Escamilla-García, Monserrat ; Delgado-Sánchez, Luis Felipe ; Ríos-Romo, Raquel Adriana ; García-Almendárez, Blanca E. ; Calderón-Domínguez, Georgina ; Méndez-Méndez, Juan Vicente ; Amaro-Reyes, Aldo ; Di Pierro, Prospero ; Regalado-González, Carlos</creatorcontrib><description>The growing demand for minimally processed foods with a long shelf life and environmentally friendly materials has forced industry to develop new technologies for food preservation and handling. The use of edible films has emerged as an alternative solution to this problem, and mixtures of carbohydrates and proteins, may be formulated to improve their properties. The objective of this work was to evaluate the effect of protein cross-linking with transglutaminase (TG) of two varieties of quinoa protein isolate (Chenopodium quinoa) [Willd (QW), and Pasankalla (QP)] on the physicochemical and barrier properties of edible films based on chitosan (CT)-quinoa protein. The evaluated properties were water vapor permeability (WVP), solubility, adsorption, roughness determined by atomic force microscopy, and the interactions among the main film components determined by Raman spectroscopy. The results indicated that TG interacted with lysine of QW and QP. CT:QW (1:5, w/w) showed the lowest solubility (14.02 ± 2.17% w/w). WVP varied with the composition of the mixture. The WVP of CT:quinoa protein ranged from 2.85 to 9.95 × 10−11 g cm Pa−1 cm−2 s−1 without TG, whereas adding TG reduced this range to 2.42–4.69 × 10−11 g cm Pa−1 cm−2 s−1. The addition of TG to CT:QP (1:10, w/w) reduced the film surface roughness from 8.0 ± 0.5 nm to 4.4 ± 0.3 nm. According to the sorption isotherm, the addition of TG to CT-QW films improved their stability [monolayer (Xm) = 0.13 ± 0.02 %]. Films with a higher amount of cross-linking showed the highest improvement in the evaluated physical properties, but interactions among proteins that were catalyzed by TG depended on the protein source and profile.</description><identifier>ISSN: 2079-6412</identifier><identifier>EISSN: 2079-6412</identifier><identifier>DOI: 10.3390/coatings9110736</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Atomic force microscopy ; Carbohydrates ; Chitosan ; Crosslinking ; Industrial development ; Lipids ; Lysine ; Mechanical properties ; New technology ; Permeability ; Physical properties ; Polymers ; Proteins ; Quinoa ; Raman spectroscopy ; Shelf life ; Solubility ; Surface roughness ; Water vapor</subject><ispartof>Coatings (Basel), 2019, Vol.9 (11), p.736</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-bddd97251fced3364dd826a1acbc1abccbc329148d31aed2f9e6d02cdd9ee713</citedby><cites>FETCH-LOGICAL-c310t-bddd97251fced3364dd826a1acbc1abccbc329148d31aed2f9e6d02cdd9ee713</cites><orcidid>0000-0002-3025-0313 ; 0000-0001-5557-275X ; 0000-0001-6520-5742</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Escamilla-García, Monserrat</creatorcontrib><creatorcontrib>Delgado-Sánchez, Luis Felipe</creatorcontrib><creatorcontrib>Ríos-Romo, Raquel Adriana</creatorcontrib><creatorcontrib>García-Almendárez, Blanca E.</creatorcontrib><creatorcontrib>Calderón-Domínguez, Georgina</creatorcontrib><creatorcontrib>Méndez-Méndez, Juan Vicente</creatorcontrib><creatorcontrib>Amaro-Reyes, Aldo</creatorcontrib><creatorcontrib>Di Pierro, Prospero</creatorcontrib><creatorcontrib>Regalado-González, Carlos</creatorcontrib><title>Effect of Transglutaminase Cross-Linking in Protein Isolates from a Mixture of Two Quinoa Varieties with Chitosan on the Physicochemical Properties of Edible Films</title><title>Coatings (Basel)</title><description>The growing demand for minimally processed foods with a long shelf life and environmentally friendly materials has forced industry to develop new technologies for food preservation and handling. The use of edible films has emerged as an alternative solution to this problem, and mixtures of carbohydrates and proteins, may be formulated to improve their properties. The objective of this work was to evaluate the effect of protein cross-linking with transglutaminase (TG) of two varieties of quinoa protein isolate (Chenopodium quinoa) [Willd (QW), and Pasankalla (QP)] on the physicochemical and barrier properties of edible films based on chitosan (CT)-quinoa protein. The evaluated properties were water vapor permeability (WVP), solubility, adsorption, roughness determined by atomic force microscopy, and the interactions among the main film components determined by Raman spectroscopy. The results indicated that TG interacted with lysine of QW and QP. CT:QW (1:5, w/w) showed the lowest solubility (14.02 ± 2.17% w/w). WVP varied with the composition of the mixture. The WVP of CT:quinoa protein ranged from 2.85 to 9.95 × 10−11 g cm Pa−1 cm−2 s−1 without TG, whereas adding TG reduced this range to 2.42–4.69 × 10−11 g cm Pa−1 cm−2 s−1. The addition of TG to CT:QP (1:10, w/w) reduced the film surface roughness from 8.0 ± 0.5 nm to 4.4 ± 0.3 nm. According to the sorption isotherm, the addition of TG to CT-QW films improved their stability [monolayer (Xm) = 0.13 ± 0.02 %]. Films with a higher amount of cross-linking showed the highest improvement in the evaluated physical properties, but interactions among proteins that were catalyzed by TG depended on the protein source and profile.</description><subject>Atomic force microscopy</subject><subject>Carbohydrates</subject><subject>Chitosan</subject><subject>Crosslinking</subject><subject>Industrial development</subject><subject>Lipids</subject><subject>Lysine</subject><subject>Mechanical properties</subject><subject>New technology</subject><subject>Permeability</subject><subject>Physical properties</subject><subject>Polymers</subject><subject>Proteins</subject><subject>Quinoa</subject><subject>Raman spectroscopy</subject><subject>Shelf life</subject><subject>Solubility</subject><subject>Surface roughness</subject><subject>Water vapor</subject><issn>2079-6412</issn><issn>2079-6412</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkU1LAzEQhhdRsNSevQY8r83Hfh6ltFqoWKF4XbLJbDd1N6lJFu3v8Y-ath7EubxzeOYZmImiW4LvGSvxVBjuld66khCcs-wiGlGcl3GWEHr5p7-OJs7tcKiSsIKUo-h73jQgPDIN2liu3bYbPO-V5g7QzBrn4pXS70GNlEZrazyEXDrTcQ8ONdb0iKNn9eUHCyfJp0Gvg9KGozduFXgVsE_lWzRrlTeOa2Q08i2gdXtwShjRQq8E747yPdgTHzxzqeoO0EJ1vbuJrhreOZj85jjaLOab2VO8enlczh5WsWAE-7iWUpY5TUkjQDKWJVIWNOOEi1oQXosQjJYkKSQjHCRtSsgkpiJMAeSEjaO7s3ZvzccAzlc7M1gdNlY0TQrGWErTQE3PlDhex0JT7a3quT1UBFfHX1T_fsF-ABrIgt4</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Escamilla-García, Monserrat</creator><creator>Delgado-Sánchez, Luis Felipe</creator><creator>Ríos-Romo, Raquel Adriana</creator><creator>García-Almendárez, Blanca E.</creator><creator>Calderón-Domínguez, Georgina</creator><creator>Méndez-Méndez, Juan Vicente</creator><creator>Amaro-Reyes, Aldo</creator><creator>Di Pierro, Prospero</creator><creator>Regalado-González, Carlos</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-3025-0313</orcidid><orcidid>https://orcid.org/0000-0001-5557-275X</orcidid><orcidid>https://orcid.org/0000-0001-6520-5742</orcidid></search><sort><creationdate>2019</creationdate><title>Effect of Transglutaminase Cross-Linking in Protein Isolates from a Mixture of Two Quinoa Varieties with Chitosan on the Physicochemical Properties of Edible Films</title><author>Escamilla-García, Monserrat ; Delgado-Sánchez, Luis Felipe ; Ríos-Romo, Raquel Adriana ; García-Almendárez, Blanca E. ; Calderón-Domínguez, Georgina ; Méndez-Méndez, Juan Vicente ; Amaro-Reyes, Aldo ; Di Pierro, Prospero ; Regalado-González, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-bddd97251fced3364dd826a1acbc1abccbc329148d31aed2f9e6d02cdd9ee713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atomic force microscopy</topic><topic>Carbohydrates</topic><topic>Chitosan</topic><topic>Crosslinking</topic><topic>Industrial development</topic><topic>Lipids</topic><topic>Lysine</topic><topic>Mechanical properties</topic><topic>New technology</topic><topic>Permeability</topic><topic>Physical properties</topic><topic>Polymers</topic><topic>Proteins</topic><topic>Quinoa</topic><topic>Raman spectroscopy</topic><topic>Shelf life</topic><topic>Solubility</topic><topic>Surface roughness</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Escamilla-García, Monserrat</creatorcontrib><creatorcontrib>Delgado-Sánchez, Luis Felipe</creatorcontrib><creatorcontrib>Ríos-Romo, Raquel Adriana</creatorcontrib><creatorcontrib>García-Almendárez, Blanca E.</creatorcontrib><creatorcontrib>Calderón-Domínguez, Georgina</creatorcontrib><creatorcontrib>Méndez-Méndez, Juan Vicente</creatorcontrib><creatorcontrib>Amaro-Reyes, Aldo</creatorcontrib><creatorcontrib>Di Pierro, Prospero</creatorcontrib><creatorcontrib>Regalado-González, Carlos</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Coatings (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Escamilla-García, Monserrat</au><au>Delgado-Sánchez, Luis Felipe</au><au>Ríos-Romo, Raquel Adriana</au><au>García-Almendárez, Blanca E.</au><au>Calderón-Domínguez, Georgina</au><au>Méndez-Méndez, Juan Vicente</au><au>Amaro-Reyes, Aldo</au><au>Di Pierro, Prospero</au><au>Regalado-González, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Transglutaminase Cross-Linking in Protein Isolates from a Mixture of Two Quinoa Varieties with Chitosan on the Physicochemical Properties of Edible Films</atitle><jtitle>Coatings (Basel)</jtitle><date>2019</date><risdate>2019</risdate><volume>9</volume><issue>11</issue><spage>736</spage><pages>736-</pages><issn>2079-6412</issn><eissn>2079-6412</eissn><abstract>The growing demand for minimally processed foods with a long shelf life and environmentally friendly materials has forced industry to develop new technologies for food preservation and handling. The use of edible films has emerged as an alternative solution to this problem, and mixtures of carbohydrates and proteins, may be formulated to improve their properties. The objective of this work was to evaluate the effect of protein cross-linking with transglutaminase (TG) of two varieties of quinoa protein isolate (Chenopodium quinoa) [Willd (QW), and Pasankalla (QP)] on the physicochemical and barrier properties of edible films based on chitosan (CT)-quinoa protein. The evaluated properties were water vapor permeability (WVP), solubility, adsorption, roughness determined by atomic force microscopy, and the interactions among the main film components determined by Raman spectroscopy. The results indicated that TG interacted with lysine of QW and QP. CT:QW (1:5, w/w) showed the lowest solubility (14.02 ± 2.17% w/w). WVP varied with the composition of the mixture. The WVP of CT:quinoa protein ranged from 2.85 to 9.95 × 10−11 g cm Pa−1 cm−2 s−1 without TG, whereas adding TG reduced this range to 2.42–4.69 × 10−11 g cm Pa−1 cm−2 s−1. The addition of TG to CT:QP (1:10, w/w) reduced the film surface roughness from 8.0 ± 0.5 nm to 4.4 ± 0.3 nm. According to the sorption isotherm, the addition of TG to CT-QW films improved their stability [monolayer (Xm) = 0.13 ± 0.02 %]. Films with a higher amount of cross-linking showed the highest improvement in the evaluated physical properties, but interactions among proteins that were catalyzed by TG depended on the protein source and profile.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/coatings9110736</doi><orcidid>https://orcid.org/0000-0002-3025-0313</orcidid><orcidid>https://orcid.org/0000-0001-5557-275X</orcidid><orcidid>https://orcid.org/0000-0001-6520-5742</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-6412 |
ispartof | Coatings (Basel), 2019, Vol.9 (11), p.736 |
issn | 2079-6412 2079-6412 |
language | eng |
recordid | cdi_proquest_journals_2548333525 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Atomic force microscopy Carbohydrates Chitosan Crosslinking Industrial development Lipids Lysine Mechanical properties New technology Permeability Physical properties Polymers Proteins Quinoa Raman spectroscopy Shelf life Solubility Surface roughness Water vapor |
title | Effect of Transglutaminase Cross-Linking in Protein Isolates from a Mixture of Two Quinoa Varieties with Chitosan on the Physicochemical Properties of Edible Films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A23%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Transglutaminase%20Cross-Linking%20in%20Protein%20Isolates%20from%20a%20Mixture%20of%20Two%20Quinoa%20Varieties%20with%20Chitosan%20on%20the%20Physicochemical%20Properties%20of%20Edible%20Films&rft.jtitle=Coatings%20(Basel)&rft.au=Escamilla-Garc%C3%ADa,%20Monserrat&rft.date=2019&rft.volume=9&rft.issue=11&rft.spage=736&rft.pages=736-&rft.issn=2079-6412&rft.eissn=2079-6412&rft_id=info:doi/10.3390/coatings9110736&rft_dat=%3Cproquest_cross%3E2548333525%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548333525&rft_id=info:pmid/&rfr_iscdi=true |