Anomaly detection and event mining in cold forming manufacturing processes

Predictive maintenance is one of the main goals within the Industry 4.0 trend. Advances in data-driven techniques offer new opportunities in terms of cost reduction, improved quality control, and increased work safety. This work brings data-driven techniques for two predictive maintenance tasks: ano...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2021-07, Vol.115 (3), p.837-852
Hauptverfasser: Nieves Avendano, Diego, Caljouw, Daniel, Deschrijver, Dirk, Van Hoecke, Sofie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 852
container_issue 3
container_start_page 837
container_title International journal of advanced manufacturing technology
container_volume 115
creator Nieves Avendano, Diego
Caljouw, Daniel
Deschrijver, Dirk
Van Hoecke, Sofie
description Predictive maintenance is one of the main goals within the Industry 4.0 trend. Advances in data-driven techniques offer new opportunities in terms of cost reduction, improved quality control, and increased work safety. This work brings data-driven techniques for two predictive maintenance tasks: anomaly detection and event prediction, applied in the real-world use case of a cold forming manufacturing line for consumer lifestyle products by using acoustic emissions sensors in proximity of the dies of the press module. The proposed models are robust and able to cope with problems such as noise, missing values, and irregular sampling. The detected anomalies are investigated by experts and confirmed to correspond to deviations in the normal operation of the machine. Moreover, we are able to find patterns which are related to the events of interest.
doi_str_mv 10.1007/s00170-020-06156-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548296512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548296512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-b3940c642413e43fd9fc9ef47dab0a1d6832a7c0f8420535fabe71d02134d7d33</originalsourceid><addsrcrecordid>eNp9kEtLxDAQx4MouK5-AU8Bz9VJJk3a47L4ZMGLnkM2D-myTdekFfbb21rBm4dhGPg_mB8h1wxuGYC6ywBMQQF8HMlKWfATsmACsUBg5SlZAJdVgUpW5-Qi590ol0xWC_Kyil1r9kfqfO9t33SRmuio__Kxp20Tm_hBm0htt3c0dKmd7tbEIRjbD2m6DqmzPmefL8lZMPvsr373krw_3L-tn4rN6-PzerUpLErsiy3WAqwUXDD0AoOrg619EMqZLRjmZIXcKAuhEhxKLIPZesUccIbCKYe4JDdz7tj8Ofjc6103pDhWal6KiteyZHxU8VllU5dz8kEfUtOadNQM9MRMz8z0yEz_MNOTCWdTPky_-fQX_Y_rGzljbuc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548296512</pqid></control><display><type>article</type><title>Anomaly detection and event mining in cold forming manufacturing processes</title><source>SpringerNature Complete Journals</source><creator>Nieves Avendano, Diego ; Caljouw, Daniel ; Deschrijver, Dirk ; Van Hoecke, Sofie</creator><creatorcontrib>Nieves Avendano, Diego ; Caljouw, Daniel ; Deschrijver, Dirk ; Van Hoecke, Sofie</creatorcontrib><description>Predictive maintenance is one of the main goals within the Industry 4.0 trend. Advances in data-driven techniques offer new opportunities in terms of cost reduction, improved quality control, and increased work safety. This work brings data-driven techniques for two predictive maintenance tasks: anomaly detection and event prediction, applied in the real-world use case of a cold forming manufacturing line for consumer lifestyle products by using acoustic emissions sensors in proximity of the dies of the press module. The proposed models are robust and able to cope with problems such as noise, missing values, and irregular sampling. The detected anomalies are investigated by experts and confirmed to correspond to deviations in the normal operation of the machine. Moreover, we are able to find patterns which are related to the events of interest.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-020-06156-2</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Acoustic emission ; Acoustics ; Advanced manufacturing technologies ; Anomalies ; CAE) and Design ; Cold ; Cold working ; Computer-Aided Engineering (CAD ; Die pressing ; Engineering ; Industrial and Production Engineering ; Irregular sampling ; Lifestyles ; Manufacturing ; Mechanical Engineering ; Media Management ; Original Article ; Predictive maintenance ; Quality control ; Sensors ; Time series</subject><ispartof>International journal of advanced manufacturing technology, 2021-07, Vol.115 (3), p.837-852</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-b3940c642413e43fd9fc9ef47dab0a1d6832a7c0f8420535fabe71d02134d7d33</citedby><cites>FETCH-LOGICAL-c363t-b3940c642413e43fd9fc9ef47dab0a1d6832a7c0f8420535fabe71d02134d7d33</cites><orcidid>0000-0001-6215-6439</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-020-06156-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-020-06156-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Nieves Avendano, Diego</creatorcontrib><creatorcontrib>Caljouw, Daniel</creatorcontrib><creatorcontrib>Deschrijver, Dirk</creatorcontrib><creatorcontrib>Van Hoecke, Sofie</creatorcontrib><title>Anomaly detection and event mining in cold forming manufacturing processes</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Predictive maintenance is one of the main goals within the Industry 4.0 trend. Advances in data-driven techniques offer new opportunities in terms of cost reduction, improved quality control, and increased work safety. This work brings data-driven techniques for two predictive maintenance tasks: anomaly detection and event prediction, applied in the real-world use case of a cold forming manufacturing line for consumer lifestyle products by using acoustic emissions sensors in proximity of the dies of the press module. The proposed models are robust and able to cope with problems such as noise, missing values, and irregular sampling. The detected anomalies are investigated by experts and confirmed to correspond to deviations in the normal operation of the machine. Moreover, we are able to find patterns which are related to the events of interest.</description><subject>Acoustic emission</subject><subject>Acoustics</subject><subject>Advanced manufacturing technologies</subject><subject>Anomalies</subject><subject>CAE) and Design</subject><subject>Cold</subject><subject>Cold working</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Die pressing</subject><subject>Engineering</subject><subject>Industrial and Production Engineering</subject><subject>Irregular sampling</subject><subject>Lifestyles</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Original Article</subject><subject>Predictive maintenance</subject><subject>Quality control</subject><subject>Sensors</subject><subject>Time series</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtLxDAQx4MouK5-AU8Bz9VJJk3a47L4ZMGLnkM2D-myTdekFfbb21rBm4dhGPg_mB8h1wxuGYC6ywBMQQF8HMlKWfATsmACsUBg5SlZAJdVgUpW5-Qi590ol0xWC_Kyil1r9kfqfO9t33SRmuio__Kxp20Tm_hBm0htt3c0dKmd7tbEIRjbD2m6DqmzPmefL8lZMPvsr373krw_3L-tn4rN6-PzerUpLErsiy3WAqwUXDD0AoOrg619EMqZLRjmZIXcKAuhEhxKLIPZesUccIbCKYe4JDdz7tj8Ofjc6103pDhWal6KiteyZHxU8VllU5dz8kEfUtOadNQM9MRMz8z0yEz_MNOTCWdTPky_-fQX_Y_rGzljbuc</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Nieves Avendano, Diego</creator><creator>Caljouw, Daniel</creator><creator>Deschrijver, Dirk</creator><creator>Van Hoecke, Sofie</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6215-6439</orcidid></search><sort><creationdate>20210701</creationdate><title>Anomaly detection and event mining in cold forming manufacturing processes</title><author>Nieves Avendano, Diego ; Caljouw, Daniel ; Deschrijver, Dirk ; Van Hoecke, Sofie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-b3940c642413e43fd9fc9ef47dab0a1d6832a7c0f8420535fabe71d02134d7d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustic emission</topic><topic>Acoustics</topic><topic>Advanced manufacturing technologies</topic><topic>Anomalies</topic><topic>CAE) and Design</topic><topic>Cold</topic><topic>Cold working</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Die pressing</topic><topic>Engineering</topic><topic>Industrial and Production Engineering</topic><topic>Irregular sampling</topic><topic>Lifestyles</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Original Article</topic><topic>Predictive maintenance</topic><topic>Quality control</topic><topic>Sensors</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nieves Avendano, Diego</creatorcontrib><creatorcontrib>Caljouw, Daniel</creatorcontrib><creatorcontrib>Deschrijver, Dirk</creatorcontrib><creatorcontrib>Van Hoecke, Sofie</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nieves Avendano, Diego</au><au>Caljouw, Daniel</au><au>Deschrijver, Dirk</au><au>Van Hoecke, Sofie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anomaly detection and event mining in cold forming manufacturing processes</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>115</volume><issue>3</issue><spage>837</spage><epage>852</epage><pages>837-852</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Predictive maintenance is one of the main goals within the Industry 4.0 trend. Advances in data-driven techniques offer new opportunities in terms of cost reduction, improved quality control, and increased work safety. This work brings data-driven techniques for two predictive maintenance tasks: anomaly detection and event prediction, applied in the real-world use case of a cold forming manufacturing line for consumer lifestyle products by using acoustic emissions sensors in proximity of the dies of the press module. The proposed models are robust and able to cope with problems such as noise, missing values, and irregular sampling. The detected anomalies are investigated by experts and confirmed to correspond to deviations in the normal operation of the machine. Moreover, we are able to find patterns which are related to the events of interest.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-020-06156-2</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6215-6439</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2021-07, Vol.115 (3), p.837-852
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2548296512
source SpringerNature Complete Journals
subjects Acoustic emission
Acoustics
Advanced manufacturing technologies
Anomalies
CAE) and Design
Cold
Cold working
Computer-Aided Engineering (CAD
Die pressing
Engineering
Industrial and Production Engineering
Irregular sampling
Lifestyles
Manufacturing
Mechanical Engineering
Media Management
Original Article
Predictive maintenance
Quality control
Sensors
Time series
title Anomaly detection and event mining in cold forming manufacturing processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A39%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anomaly%20detection%20and%20event%20mining%20in%20cold%20forming%20manufacturing%20processes&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Nieves%20Avendano,%20Diego&rft.date=2021-07-01&rft.volume=115&rft.issue=3&rft.spage=837&rft.epage=852&rft.pages=837-852&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-020-06156-2&rft_dat=%3Cproquest_cross%3E2548296512%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548296512&rft_id=info:pmid/&rfr_iscdi=true