Anomaly detection and event mining in cold forming manufacturing processes
Predictive maintenance is one of the main goals within the Industry 4.0 trend. Advances in data-driven techniques offer new opportunities in terms of cost reduction, improved quality control, and increased work safety. This work brings data-driven techniques for two predictive maintenance tasks: ano...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2021-07, Vol.115 (3), p.837-852 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 852 |
---|---|
container_issue | 3 |
container_start_page | 837 |
container_title | International journal of advanced manufacturing technology |
container_volume | 115 |
creator | Nieves Avendano, Diego Caljouw, Daniel Deschrijver, Dirk Van Hoecke, Sofie |
description | Predictive maintenance is one of the main goals within the Industry 4.0 trend. Advances in data-driven techniques offer new opportunities in terms of cost reduction, improved quality control, and increased work safety. This work brings data-driven techniques for two predictive maintenance tasks: anomaly detection and event prediction, applied in the real-world use case of a cold forming manufacturing line for consumer lifestyle products by using acoustic emissions sensors in proximity of the dies of the press module. The proposed models are robust and able to cope with problems such as noise, missing values, and irregular sampling. The detected anomalies are investigated by experts and confirmed to correspond to deviations in the normal operation of the machine. Moreover, we are able to find patterns which are related to the events of interest. |
doi_str_mv | 10.1007/s00170-020-06156-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548296512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548296512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-b3940c642413e43fd9fc9ef47dab0a1d6832a7c0f8420535fabe71d02134d7d33</originalsourceid><addsrcrecordid>eNp9kEtLxDAQx4MouK5-AU8Bz9VJJk3a47L4ZMGLnkM2D-myTdekFfbb21rBm4dhGPg_mB8h1wxuGYC6ywBMQQF8HMlKWfATsmACsUBg5SlZAJdVgUpW5-Qi590ol0xWC_Kyil1r9kfqfO9t33SRmuio__Kxp20Tm_hBm0htt3c0dKmd7tbEIRjbD2m6DqmzPmefL8lZMPvsr373krw_3L-tn4rN6-PzerUpLErsiy3WAqwUXDD0AoOrg619EMqZLRjmZIXcKAuhEhxKLIPZesUccIbCKYe4JDdz7tj8Ofjc6103pDhWal6KiteyZHxU8VllU5dz8kEfUtOadNQM9MRMz8z0yEz_MNOTCWdTPky_-fQX_Y_rGzljbuc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548296512</pqid></control><display><type>article</type><title>Anomaly detection and event mining in cold forming manufacturing processes</title><source>SpringerNature Complete Journals</source><creator>Nieves Avendano, Diego ; Caljouw, Daniel ; Deschrijver, Dirk ; Van Hoecke, Sofie</creator><creatorcontrib>Nieves Avendano, Diego ; Caljouw, Daniel ; Deschrijver, Dirk ; Van Hoecke, Sofie</creatorcontrib><description>Predictive maintenance is one of the main goals within the Industry 4.0 trend. Advances in data-driven techniques offer new opportunities in terms of cost reduction, improved quality control, and increased work safety. This work brings data-driven techniques for two predictive maintenance tasks: anomaly detection and event prediction, applied in the real-world use case of a cold forming manufacturing line for consumer lifestyle products by using acoustic emissions sensors in proximity of the dies of the press module. The proposed models are robust and able to cope with problems such as noise, missing values, and irregular sampling. The detected anomalies are investigated by experts and confirmed to correspond to deviations in the normal operation of the machine. Moreover, we are able to find patterns which are related to the events of interest.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-020-06156-2</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Acoustic emission ; Acoustics ; Advanced manufacturing technologies ; Anomalies ; CAE) and Design ; Cold ; Cold working ; Computer-Aided Engineering (CAD ; Die pressing ; Engineering ; Industrial and Production Engineering ; Irregular sampling ; Lifestyles ; Manufacturing ; Mechanical Engineering ; Media Management ; Original Article ; Predictive maintenance ; Quality control ; Sensors ; Time series</subject><ispartof>International journal of advanced manufacturing technology, 2021-07, Vol.115 (3), p.837-852</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-b3940c642413e43fd9fc9ef47dab0a1d6832a7c0f8420535fabe71d02134d7d33</citedby><cites>FETCH-LOGICAL-c363t-b3940c642413e43fd9fc9ef47dab0a1d6832a7c0f8420535fabe71d02134d7d33</cites><orcidid>0000-0001-6215-6439</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-020-06156-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-020-06156-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Nieves Avendano, Diego</creatorcontrib><creatorcontrib>Caljouw, Daniel</creatorcontrib><creatorcontrib>Deschrijver, Dirk</creatorcontrib><creatorcontrib>Van Hoecke, Sofie</creatorcontrib><title>Anomaly detection and event mining in cold forming manufacturing processes</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Predictive maintenance is one of the main goals within the Industry 4.0 trend. Advances in data-driven techniques offer new opportunities in terms of cost reduction, improved quality control, and increased work safety. This work brings data-driven techniques for two predictive maintenance tasks: anomaly detection and event prediction, applied in the real-world use case of a cold forming manufacturing line for consumer lifestyle products by using acoustic emissions sensors in proximity of the dies of the press module. The proposed models are robust and able to cope with problems such as noise, missing values, and irregular sampling. The detected anomalies are investigated by experts and confirmed to correspond to deviations in the normal operation of the machine. Moreover, we are able to find patterns which are related to the events of interest.</description><subject>Acoustic emission</subject><subject>Acoustics</subject><subject>Advanced manufacturing technologies</subject><subject>Anomalies</subject><subject>CAE) and Design</subject><subject>Cold</subject><subject>Cold working</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Die pressing</subject><subject>Engineering</subject><subject>Industrial and Production Engineering</subject><subject>Irregular sampling</subject><subject>Lifestyles</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Original Article</subject><subject>Predictive maintenance</subject><subject>Quality control</subject><subject>Sensors</subject><subject>Time series</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtLxDAQx4MouK5-AU8Bz9VJJk3a47L4ZMGLnkM2D-myTdekFfbb21rBm4dhGPg_mB8h1wxuGYC6ywBMQQF8HMlKWfATsmACsUBg5SlZAJdVgUpW5-Qi590ol0xWC_Kyil1r9kfqfO9t33SRmuio__Kxp20Tm_hBm0htt3c0dKmd7tbEIRjbD2m6DqmzPmefL8lZMPvsr373krw_3L-tn4rN6-PzerUpLErsiy3WAqwUXDD0AoOrg619EMqZLRjmZIXcKAuhEhxKLIPZesUccIbCKYe4JDdz7tj8Ofjc6103pDhWal6KiteyZHxU8VllU5dz8kEfUtOadNQM9MRMz8z0yEz_MNOTCWdTPky_-fQX_Y_rGzljbuc</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Nieves Avendano, Diego</creator><creator>Caljouw, Daniel</creator><creator>Deschrijver, Dirk</creator><creator>Van Hoecke, Sofie</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6215-6439</orcidid></search><sort><creationdate>20210701</creationdate><title>Anomaly detection and event mining in cold forming manufacturing processes</title><author>Nieves Avendano, Diego ; Caljouw, Daniel ; Deschrijver, Dirk ; Van Hoecke, Sofie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-b3940c642413e43fd9fc9ef47dab0a1d6832a7c0f8420535fabe71d02134d7d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustic emission</topic><topic>Acoustics</topic><topic>Advanced manufacturing technologies</topic><topic>Anomalies</topic><topic>CAE) and Design</topic><topic>Cold</topic><topic>Cold working</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Die pressing</topic><topic>Engineering</topic><topic>Industrial and Production Engineering</topic><topic>Irregular sampling</topic><topic>Lifestyles</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Original Article</topic><topic>Predictive maintenance</topic><topic>Quality control</topic><topic>Sensors</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nieves Avendano, Diego</creatorcontrib><creatorcontrib>Caljouw, Daniel</creatorcontrib><creatorcontrib>Deschrijver, Dirk</creatorcontrib><creatorcontrib>Van Hoecke, Sofie</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nieves Avendano, Diego</au><au>Caljouw, Daniel</au><au>Deschrijver, Dirk</au><au>Van Hoecke, Sofie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anomaly detection and event mining in cold forming manufacturing processes</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>115</volume><issue>3</issue><spage>837</spage><epage>852</epage><pages>837-852</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Predictive maintenance is one of the main goals within the Industry 4.0 trend. Advances in data-driven techniques offer new opportunities in terms of cost reduction, improved quality control, and increased work safety. This work brings data-driven techniques for two predictive maintenance tasks: anomaly detection and event prediction, applied in the real-world use case of a cold forming manufacturing line for consumer lifestyle products by using acoustic emissions sensors in proximity of the dies of the press module. The proposed models are robust and able to cope with problems such as noise, missing values, and irregular sampling. The detected anomalies are investigated by experts and confirmed to correspond to deviations in the normal operation of the machine. Moreover, we are able to find patterns which are related to the events of interest.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-020-06156-2</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6215-6439</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2021-07, Vol.115 (3), p.837-852 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2548296512 |
source | SpringerNature Complete Journals |
subjects | Acoustic emission Acoustics Advanced manufacturing technologies Anomalies CAE) and Design Cold Cold working Computer-Aided Engineering (CAD Die pressing Engineering Industrial and Production Engineering Irregular sampling Lifestyles Manufacturing Mechanical Engineering Media Management Original Article Predictive maintenance Quality control Sensors Time series |
title | Anomaly detection and event mining in cold forming manufacturing processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A39%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anomaly%20detection%20and%20event%20mining%20in%20cold%20forming%20manufacturing%20processes&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Nieves%20Avendano,%20Diego&rft.date=2021-07-01&rft.volume=115&rft.issue=3&rft.spage=837&rft.epage=852&rft.pages=837-852&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-020-06156-2&rft_dat=%3Cproquest_cross%3E2548296512%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548296512&rft_id=info:pmid/&rfr_iscdi=true |