Prediction and analysis of rolling process temperature field for silicon steel in tandem cold rolling
In order to accurately predict the rolling process temperature field for the high-grade non-oriented silicon steel in five stands tandem cold rolling, a model with multi-layer grids in thickness direction is established with the control volume heat balance method by considering the actual heat sourc...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2021-07, Vol.115 (5-6), p.1637-1655 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1655 |
---|---|
container_issue | 5-6 |
container_start_page | 1637 |
container_title | International journal of advanced manufacturing technology |
container_volume | 115 |
creator | Han, Guomin Li, Hongbo Zhang, Jie Kong, Ning Liu, Yujin You, Xuechang Xie, Yu Shang, Fei |
description | In order to accurately predict the rolling process temperature field for the high-grade non-oriented silicon steel in five stands tandem cold rolling, a model with multi-layer grids in thickness direction is established with the control volume heat balance method by considering the actual heat sources including the deformation heat, the friction heat, and the heat transfer processes including the contact heat loss and the emulsion heat transfer. Firstly, according to the actual parameters in the industrial field, the entire rolling process temperature field is accurately predicted under the premise of ensuring the model’s convergence. And the model’s reliability is verified by the measured temperature in the field. Secondly, the result shows that the lateral temperature distribution of silicon steel is uneven, and the lateral temperature difference reaches the maximum at the exit of the fifth stand (S5). At last, the strip in S5 is taken as the object to analyze the effects of different rolling parameters on the temperature distribution. The result shows that the reduction rate has a significant effect on the strip temperature distribution while the friction coefficient and the rolling speed have little effects; in addition, the larger the reduction rate, the higher the whole temperature, the smaller the lateral temperature difference and the longitudinal temperature difference. In the long run, the results will provide great references for the rolling parameters adjustment due to temperature control in the industrial field. |
doi_str_mv | 10.1007/s00170-021-06993-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548296479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548296479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-cb3e14baa21dd5bebaabab6b42663d4f0d8834bcc49a21a5e88d0c881c85d093</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAczTZZNPsUYpfUNBD7yGbzJaU7aZmtof-e1O34M1DmBye92HmJeRe8EfB-eIJORcLznglGNdNI1lzQWZCSckkF_UlmfFKGyYX2lyTG8RtwbXQZkbgK0OIfoxpoG4I5bn-iBFp6mhOfR-HDd3n5AGRjrDbQ3bjIQPtIvSBdilTjH30JY0jQE_jQMfigR31qQBnxS256lyPcHeec7J-fVkv39nq8-1j-bxiXopmZL6VIFTrXCVCqFsov9a1ulWV1jKojgdjpGq9V01BXA3GBO6NEd7UgTdyTh4mbdn4-wA42m065HIR2qpWpmq0WpyoaqJ8TogZOrvPcefy0QpuT23aqU1b2rS_bdpTSE4hLPCwgfyn_if1A2lZego</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548296479</pqid></control><display><type>article</type><title>Prediction and analysis of rolling process temperature field for silicon steel in tandem cold rolling</title><source>Springer Journals</source><creator>Han, Guomin ; Li, Hongbo ; Zhang, Jie ; Kong, Ning ; Liu, Yujin ; You, Xuechang ; Xie, Yu ; Shang, Fei</creator><creatorcontrib>Han, Guomin ; Li, Hongbo ; Zhang, Jie ; Kong, Ning ; Liu, Yujin ; You, Xuechang ; Xie, Yu ; Shang, Fei</creatorcontrib><description>In order to accurately predict the rolling process temperature field for the high-grade non-oriented silicon steel in five stands tandem cold rolling, a model with multi-layer grids in thickness direction is established with the control volume heat balance method by considering the actual heat sources including the deformation heat, the friction heat, and the heat transfer processes including the contact heat loss and the emulsion heat transfer. Firstly, according to the actual parameters in the industrial field, the entire rolling process temperature field is accurately predicted under the premise of ensuring the model’s convergence. And the model’s reliability is verified by the measured temperature in the field. Secondly, the result shows that the lateral temperature distribution of silicon steel is uneven, and the lateral temperature difference reaches the maximum at the exit of the fifth stand (S5). At last, the strip in S5 is taken as the object to analyze the effects of different rolling parameters on the temperature distribution. The result shows that the reduction rate has a significant effect on the strip temperature distribution while the friction coefficient and the rolling speed have little effects; in addition, the larger the reduction rate, the higher the whole temperature, the smaller the lateral temperature difference and the longitudinal temperature difference. In the long run, the results will provide great references for the rolling parameters adjustment due to temperature control in the industrial field.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-021-06993-9</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>CAE) and Design ; Coefficient of friction ; Cold rolling ; Computer-Aided Engineering (CAD ; Deformation ; Engineering ; Heat ; Heat balance method ; Heat loss ; Heat sources ; Heat transfer ; Industrial and Production Engineering ; Mathematical models ; Mechanical Engineering ; Media Management ; Multilayers ; Original Article ; Parameters ; Rolling speed ; Silicon steels ; Strip ; Temperature ; Temperature control ; Temperature distribution ; Temperature gradients ; Thickness</subject><ispartof>International journal of advanced manufacturing technology, 2021-07, Vol.115 (5-6), p.1637-1655</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-cb3e14baa21dd5bebaabab6b42663d4f0d8834bcc49a21a5e88d0c881c85d093</citedby><cites>FETCH-LOGICAL-c319t-cb3e14baa21dd5bebaabab6b42663d4f0d8834bcc49a21a5e88d0c881c85d093</cites><orcidid>0000-0003-2795-6910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-021-06993-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-021-06993-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Han, Guomin</creatorcontrib><creatorcontrib>Li, Hongbo</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Kong, Ning</creatorcontrib><creatorcontrib>Liu, Yujin</creatorcontrib><creatorcontrib>You, Xuechang</creatorcontrib><creatorcontrib>Xie, Yu</creatorcontrib><creatorcontrib>Shang, Fei</creatorcontrib><title>Prediction and analysis of rolling process temperature field for silicon steel in tandem cold rolling</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>In order to accurately predict the rolling process temperature field for the high-grade non-oriented silicon steel in five stands tandem cold rolling, a model with multi-layer grids in thickness direction is established with the control volume heat balance method by considering the actual heat sources including the deformation heat, the friction heat, and the heat transfer processes including the contact heat loss and the emulsion heat transfer. Firstly, according to the actual parameters in the industrial field, the entire rolling process temperature field is accurately predicted under the premise of ensuring the model’s convergence. And the model’s reliability is verified by the measured temperature in the field. Secondly, the result shows that the lateral temperature distribution of silicon steel is uneven, and the lateral temperature difference reaches the maximum at the exit of the fifth stand (S5). At last, the strip in S5 is taken as the object to analyze the effects of different rolling parameters on the temperature distribution. The result shows that the reduction rate has a significant effect on the strip temperature distribution while the friction coefficient and the rolling speed have little effects; in addition, the larger the reduction rate, the higher the whole temperature, the smaller the lateral temperature difference and the longitudinal temperature difference. In the long run, the results will provide great references for the rolling parameters adjustment due to temperature control in the industrial field.</description><subject>CAE) and Design</subject><subject>Coefficient of friction</subject><subject>Cold rolling</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Deformation</subject><subject>Engineering</subject><subject>Heat</subject><subject>Heat balance method</subject><subject>Heat loss</subject><subject>Heat sources</subject><subject>Heat transfer</subject><subject>Industrial and Production Engineering</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Multilayers</subject><subject>Original Article</subject><subject>Parameters</subject><subject>Rolling speed</subject><subject>Silicon steels</subject><subject>Strip</subject><subject>Temperature</subject><subject>Temperature control</subject><subject>Temperature distribution</subject><subject>Temperature gradients</subject><subject>Thickness</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAczTZZNPsUYpfUNBD7yGbzJaU7aZmtof-e1O34M1DmBye92HmJeRe8EfB-eIJORcLznglGNdNI1lzQWZCSckkF_UlmfFKGyYX2lyTG8RtwbXQZkbgK0OIfoxpoG4I5bn-iBFp6mhOfR-HDd3n5AGRjrDbQ3bjIQPtIvSBdilTjH30JY0jQE_jQMfigR31qQBnxS256lyPcHeec7J-fVkv39nq8-1j-bxiXopmZL6VIFTrXCVCqFsov9a1ulWV1jKojgdjpGq9V01BXA3GBO6NEd7UgTdyTh4mbdn4-wA42m065HIR2qpWpmq0WpyoaqJ8TogZOrvPcefy0QpuT23aqU1b2rS_bdpTSE4hLPCwgfyn_if1A2lZego</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Han, Guomin</creator><creator>Li, Hongbo</creator><creator>Zhang, Jie</creator><creator>Kong, Ning</creator><creator>Liu, Yujin</creator><creator>You, Xuechang</creator><creator>Xie, Yu</creator><creator>Shang, Fei</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-2795-6910</orcidid></search><sort><creationdate>20210701</creationdate><title>Prediction and analysis of rolling process temperature field for silicon steel in tandem cold rolling</title><author>Han, Guomin ; Li, Hongbo ; Zhang, Jie ; Kong, Ning ; Liu, Yujin ; You, Xuechang ; Xie, Yu ; Shang, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-cb3e14baa21dd5bebaabab6b42663d4f0d8834bcc49a21a5e88d0c881c85d093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CAE) and Design</topic><topic>Coefficient of friction</topic><topic>Cold rolling</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Deformation</topic><topic>Engineering</topic><topic>Heat</topic><topic>Heat balance method</topic><topic>Heat loss</topic><topic>Heat sources</topic><topic>Heat transfer</topic><topic>Industrial and Production Engineering</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Multilayers</topic><topic>Original Article</topic><topic>Parameters</topic><topic>Rolling speed</topic><topic>Silicon steels</topic><topic>Strip</topic><topic>Temperature</topic><topic>Temperature control</topic><topic>Temperature distribution</topic><topic>Temperature gradients</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Guomin</creatorcontrib><creatorcontrib>Li, Hongbo</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Kong, Ning</creatorcontrib><creatorcontrib>Liu, Yujin</creatorcontrib><creatorcontrib>You, Xuechang</creatorcontrib><creatorcontrib>Xie, Yu</creatorcontrib><creatorcontrib>Shang, Fei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Guomin</au><au>Li, Hongbo</au><au>Zhang, Jie</au><au>Kong, Ning</au><au>Liu, Yujin</au><au>You, Xuechang</au><au>Xie, Yu</au><au>Shang, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction and analysis of rolling process temperature field for silicon steel in tandem cold rolling</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>115</volume><issue>5-6</issue><spage>1637</spage><epage>1655</epage><pages>1637-1655</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>In order to accurately predict the rolling process temperature field for the high-grade non-oriented silicon steel in five stands tandem cold rolling, a model with multi-layer grids in thickness direction is established with the control volume heat balance method by considering the actual heat sources including the deformation heat, the friction heat, and the heat transfer processes including the contact heat loss and the emulsion heat transfer. Firstly, according to the actual parameters in the industrial field, the entire rolling process temperature field is accurately predicted under the premise of ensuring the model’s convergence. And the model’s reliability is verified by the measured temperature in the field. Secondly, the result shows that the lateral temperature distribution of silicon steel is uneven, and the lateral temperature difference reaches the maximum at the exit of the fifth stand (S5). At last, the strip in S5 is taken as the object to analyze the effects of different rolling parameters on the temperature distribution. The result shows that the reduction rate has a significant effect on the strip temperature distribution while the friction coefficient and the rolling speed have little effects; in addition, the larger the reduction rate, the higher the whole temperature, the smaller the lateral temperature difference and the longitudinal temperature difference. In the long run, the results will provide great references for the rolling parameters adjustment due to temperature control in the industrial field.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-021-06993-9</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-2795-6910</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2021-07, Vol.115 (5-6), p.1637-1655 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2548296479 |
source | Springer Journals |
subjects | CAE) and Design Coefficient of friction Cold rolling Computer-Aided Engineering (CAD Deformation Engineering Heat Heat balance method Heat loss Heat sources Heat transfer Industrial and Production Engineering Mathematical models Mechanical Engineering Media Management Multilayers Original Article Parameters Rolling speed Silicon steels Strip Temperature Temperature control Temperature distribution Temperature gradients Thickness |
title | Prediction and analysis of rolling process temperature field for silicon steel in tandem cold rolling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A16%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20and%20analysis%20of%20rolling%20process%20temperature%20field%20for%20silicon%20steel%20in%20tandem%20cold%20rolling&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Han,%20Guomin&rft.date=2021-07-01&rft.volume=115&rft.issue=5-6&rft.spage=1637&rft.epage=1655&rft.pages=1637-1655&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-021-06993-9&rft_dat=%3Cproquest_cross%3E2548296479%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548296479&rft_id=info:pmid/&rfr_iscdi=true |