Hyperspectral imaging for prediction of surface roughness in laser powder bed fusion

This article discusses the relevance of in situ quality assurance in metal additive manufacturing for cost-efficient product qualification. It presents an approach for monitoring the laser powder bed fusion (LPBF) process using an area-scan hyperspectral camera to predict the surface roughness R z w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2021-07, Vol.115 (4), p.1249-1258
Hauptverfasser: Gerdes, Niklas, Hoff, Christian, Hermsdorf, Jörg, Kaierle, Stefan, Overmeyer, Ludger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1258
container_issue 4
container_start_page 1249
container_title International journal of advanced manufacturing technology
container_volume 115
creator Gerdes, Niklas
Hoff, Christian
Hermsdorf, Jörg
Kaierle, Stefan
Overmeyer, Ludger
description This article discusses the relevance of in situ quality assurance in metal additive manufacturing for cost-efficient product qualification. It presents an approach for monitoring the laser powder bed fusion (LPBF) process using an area-scan hyperspectral camera to predict the surface roughness R z with the help of a convolutional neural network. These investigations were carried out during LPBF processing of the magnesium alloy WE43 that, due to its bioresorbability and compatibility, holds significant potential for biomedical implants. A data acquisition and processing methodology has been set up to enable efficient management of the hyperspectral data. The hyperspectral images obtained from the process were labeled with the surface roughness R z as determined by a confocal microscope. The data was used to train a convolutional neural network whose hyperparameters were optimized in a hyperparameter tuning process. The resulting network was able to predict the surface roughness within a mean absolute error (MAE) of 4.1 μm over samples from three different parameter sets. Since this is significantly smaller than the spread of the actual roughness measured (MAE = 14.3 μm), it indicates that the network identified features in the hyperspectral data linking to the roughness. These results provide the basis for future research aiming to link hyperspectral process images to further part properties relevant for quality assurance.
doi_str_mv 10.1007/s00170-021-07274-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548296145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548296145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-23d6fa21473f6c39d5741e1987f1303ed3a7c206e00385d389ac2a8f840afea33</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AVcB19GXvDZJlzL4BQNuxnWIaVI7jE1NWmT-vdER3Lm6m3Pv4x1CLjlccwB1kwG4AgaCM1BCVYwfkQWvEBkCr4_JAoTUDJXUp-Qs523BJZd6QTaP-9GnPHo3Jbuj_bvt-qGjISY6Jt_2burjQGOgeU7BOk9TnLu3wedM-4HubPYFjJ9tiVff0jDnwp-Tk2B32V_85pK83N9tVo9s_fzwtLpdMycanJjAVgYreKUwSIdNW6uKe95oFTgC-hatcgKkB0Bdt6gb64TVQVdgg7eIS3J12B1T_Jh9nsw2zmkoJ42oKy0ayau6UOJAuRRzTj6YMZU_095wMN_2zMGeKfbMjz3DSwkPpVzgofPpb_qf1hdiQXJf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548296145</pqid></control><display><type>article</type><title>Hyperspectral imaging for prediction of surface roughness in laser powder bed fusion</title><source>SpringerLink Journals</source><creator>Gerdes, Niklas ; Hoff, Christian ; Hermsdorf, Jörg ; Kaierle, Stefan ; Overmeyer, Ludger</creator><creatorcontrib>Gerdes, Niklas ; Hoff, Christian ; Hermsdorf, Jörg ; Kaierle, Stefan ; Overmeyer, Ludger</creatorcontrib><description>This article discusses the relevance of in situ quality assurance in metal additive manufacturing for cost-efficient product qualification. It presents an approach for monitoring the laser powder bed fusion (LPBF) process using an area-scan hyperspectral camera to predict the surface roughness R z with the help of a convolutional neural network. These investigations were carried out during LPBF processing of the magnesium alloy WE43 that, due to its bioresorbability and compatibility, holds significant potential for biomedical implants. A data acquisition and processing methodology has been set up to enable efficient management of the hyperspectral data. The hyperspectral images obtained from the process were labeled with the surface roughness R z as determined by a confocal microscope. The data was used to train a convolutional neural network whose hyperparameters were optimized in a hyperparameter tuning process. The resulting network was able to predict the surface roughness within a mean absolute error (MAE) of 4.1 μm over samples from three different parameter sets. Since this is significantly smaller than the spread of the actual roughness measured (MAE = 14.3 μm), it indicates that the network identified features in the hyperspectral data linking to the roughness. These results provide the basis for future research aiming to link hyperspectral process images to further part properties relevant for quality assurance.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-021-07274-1</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial neural networks ; Biocompatibility ; Biomedical data ; Biomedical materials ; CAE) and Design ; Computer-Aided Engineering (CAD ; Engineering ; Hyperspectral imaging ; Industrial and Production Engineering ; Magnesium base alloys ; Mechanical Engineering ; Media Management ; Neural networks ; Original Article ; Powder beds ; Quality assurance ; Quality control ; Rapid prototyping ; Surface roughness ; Surgical implants</subject><ispartof>International journal of advanced manufacturing technology, 2021-07, Vol.115 (4), p.1249-1258</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-23d6fa21473f6c39d5741e1987f1303ed3a7c206e00385d389ac2a8f840afea33</citedby><cites>FETCH-LOGICAL-c293t-23d6fa21473f6c39d5741e1987f1303ed3a7c206e00385d389ac2a8f840afea33</cites><orcidid>0000-0003-3176-3898</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-021-07274-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-021-07274-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gerdes, Niklas</creatorcontrib><creatorcontrib>Hoff, Christian</creatorcontrib><creatorcontrib>Hermsdorf, Jörg</creatorcontrib><creatorcontrib>Kaierle, Stefan</creatorcontrib><creatorcontrib>Overmeyer, Ludger</creatorcontrib><title>Hyperspectral imaging for prediction of surface roughness in laser powder bed fusion</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>This article discusses the relevance of in situ quality assurance in metal additive manufacturing for cost-efficient product qualification. It presents an approach for monitoring the laser powder bed fusion (LPBF) process using an area-scan hyperspectral camera to predict the surface roughness R z with the help of a convolutional neural network. These investigations were carried out during LPBF processing of the magnesium alloy WE43 that, due to its bioresorbability and compatibility, holds significant potential for biomedical implants. A data acquisition and processing methodology has been set up to enable efficient management of the hyperspectral data. The hyperspectral images obtained from the process were labeled with the surface roughness R z as determined by a confocal microscope. The data was used to train a convolutional neural network whose hyperparameters were optimized in a hyperparameter tuning process. The resulting network was able to predict the surface roughness within a mean absolute error (MAE) of 4.1 μm over samples from three different parameter sets. Since this is significantly smaller than the spread of the actual roughness measured (MAE = 14.3 μm), it indicates that the network identified features in the hyperspectral data linking to the roughness. These results provide the basis for future research aiming to link hyperspectral process images to further part properties relevant for quality assurance.</description><subject>Artificial neural networks</subject><subject>Biocompatibility</subject><subject>Biomedical data</subject><subject>Biomedical materials</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Engineering</subject><subject>Hyperspectral imaging</subject><subject>Industrial and Production Engineering</subject><subject>Magnesium base alloys</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Powder beds</subject><subject>Quality assurance</subject><subject>Quality control</subject><subject>Rapid prototyping</subject><subject>Surface roughness</subject><subject>Surgical implants</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LxDAURYMoOI7-AVcB19GXvDZJlzL4BQNuxnWIaVI7jE1NWmT-vdER3Lm6m3Pv4x1CLjlccwB1kwG4AgaCM1BCVYwfkQWvEBkCr4_JAoTUDJXUp-Qs523BJZd6QTaP-9GnPHo3Jbuj_bvt-qGjISY6Jt_2burjQGOgeU7BOk9TnLu3wedM-4HubPYFjJ9tiVff0jDnwp-Tk2B32V_85pK83N9tVo9s_fzwtLpdMycanJjAVgYreKUwSIdNW6uKe95oFTgC-hatcgKkB0Bdt6gb64TVQVdgg7eIS3J12B1T_Jh9nsw2zmkoJ42oKy0ayau6UOJAuRRzTj6YMZU_095wMN_2zMGeKfbMjz3DSwkPpVzgofPpb_qf1hdiQXJf</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Gerdes, Niklas</creator><creator>Hoff, Christian</creator><creator>Hermsdorf, Jörg</creator><creator>Kaierle, Stefan</creator><creator>Overmeyer, Ludger</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-3176-3898</orcidid></search><sort><creationdate>20210701</creationdate><title>Hyperspectral imaging for prediction of surface roughness in laser powder bed fusion</title><author>Gerdes, Niklas ; Hoff, Christian ; Hermsdorf, Jörg ; Kaierle, Stefan ; Overmeyer, Ludger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-23d6fa21473f6c39d5741e1987f1303ed3a7c206e00385d389ac2a8f840afea33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Biocompatibility</topic><topic>Biomedical data</topic><topic>Biomedical materials</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Engineering</topic><topic>Hyperspectral imaging</topic><topic>Industrial and Production Engineering</topic><topic>Magnesium base alloys</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Powder beds</topic><topic>Quality assurance</topic><topic>Quality control</topic><topic>Rapid prototyping</topic><topic>Surface roughness</topic><topic>Surgical implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerdes, Niklas</creatorcontrib><creatorcontrib>Hoff, Christian</creatorcontrib><creatorcontrib>Hermsdorf, Jörg</creatorcontrib><creatorcontrib>Kaierle, Stefan</creatorcontrib><creatorcontrib>Overmeyer, Ludger</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerdes, Niklas</au><au>Hoff, Christian</au><au>Hermsdorf, Jörg</au><au>Kaierle, Stefan</au><au>Overmeyer, Ludger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperspectral imaging for prediction of surface roughness in laser powder bed fusion</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>115</volume><issue>4</issue><spage>1249</spage><epage>1258</epage><pages>1249-1258</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>This article discusses the relevance of in situ quality assurance in metal additive manufacturing for cost-efficient product qualification. It presents an approach for monitoring the laser powder bed fusion (LPBF) process using an area-scan hyperspectral camera to predict the surface roughness R z with the help of a convolutional neural network. These investigations were carried out during LPBF processing of the magnesium alloy WE43 that, due to its bioresorbability and compatibility, holds significant potential for biomedical implants. A data acquisition and processing methodology has been set up to enable efficient management of the hyperspectral data. The hyperspectral images obtained from the process were labeled with the surface roughness R z as determined by a confocal microscope. The data was used to train a convolutional neural network whose hyperparameters were optimized in a hyperparameter tuning process. The resulting network was able to predict the surface roughness within a mean absolute error (MAE) of 4.1 μm over samples from three different parameter sets. Since this is significantly smaller than the spread of the actual roughness measured (MAE = 14.3 μm), it indicates that the network identified features in the hyperspectral data linking to the roughness. These results provide the basis for future research aiming to link hyperspectral process images to further part properties relevant for quality assurance.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-021-07274-1</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3176-3898</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2021-07, Vol.115 (4), p.1249-1258
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2548296145
source SpringerLink Journals
subjects Artificial neural networks
Biocompatibility
Biomedical data
Biomedical materials
CAE) and Design
Computer-Aided Engineering (CAD
Engineering
Hyperspectral imaging
Industrial and Production Engineering
Magnesium base alloys
Mechanical Engineering
Media Management
Neural networks
Original Article
Powder beds
Quality assurance
Quality control
Rapid prototyping
Surface roughness
Surgical implants
title Hyperspectral imaging for prediction of surface roughness in laser powder bed fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperspectral%20imaging%20for%20prediction%20of%20surface%20roughness%20in%20laser%20powder%20bed%20fusion&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Gerdes,%20Niklas&rft.date=2021-07-01&rft.volume=115&rft.issue=4&rft.spage=1249&rft.epage=1258&rft.pages=1249-1258&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-021-07274-1&rft_dat=%3Cproquest_cross%3E2548296145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548296145&rft_id=info:pmid/&rfr_iscdi=true