Bismuth sulphide decorated ZnO nanorods heterostructure assembly via controlled SILAR cationic concentration for enhanced photoelectrochemical cells
The current study investigates Bi2S3 thin films coated on ZnO NRAs with varying cationic concentrations through ionic layer adsorption and reaction (SILAR) technique. XRD patterns reveal that Bi2S3 is successfully synthesised and exhibits orthorhombic structure on the wurtzite ZnO NRAs. The band gap...
Gespeichert in:
Veröffentlicht in: | Materials research express 2020-02, Vol.7 (2), p.25510 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 25510 |
container_title | Materials research express |
container_volume | 7 |
creator | AL-Zahrani, A A Zainal, Z Talib, Z A Lim, H N Holi, A M |
description | The current study investigates Bi2S3 thin films coated on ZnO NRAs with varying cationic concentrations through ionic layer adsorption and reaction (SILAR) technique. XRD patterns reveal that Bi2S3 is successfully synthesised and exhibits orthorhombic structure on the wurtzite ZnO NRAs. The band gap energy (Eg) of Bi2S3/ZnO NRAs shows a notable red shift with increasing cationic concentration. The photocurrent density increases significantly with increasing concentration from 1 mM to 3 mM before decreases at higher concentration due to agglomeration of Bi2S3 NPs and formation of recombination centres. The hybrid photoanode Bi2S3/ZnO NRAs at 3 mM exhibits the highest photocurrent value (1.92 mA cm−2), which is about six times greater than that of plain ZnO NRAs (0.337 mA cm−2). The high photoconversion efficiency value of 1.65% versus 0.5 V Ag A−1g−1C−1l−1 is obtained by Bi2S3/ZnO NRAs (3 mM) in comparison with pristine ZnO NRs, mainly due to the stepwise band alignment edge and significant enhancement of morphological and optical properties. The study reveals that controlling the cationic concentration can potentially improve the photoconversion efficiency. |
doi_str_mv | 10.1088/2053-1591/ab6e2e |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2548204338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_620737bd63344dc18f3723351b386fa2</doaj_id><sourcerecordid>2548204338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-6212b523f1d4322e1f440279b4d0eaf5875e9c8b702b2d1b51cbd5acfb258b863</originalsourceid><addsrcrecordid>eNp9Uctu1TAUjBBIVKV7lpaQWHGpn4nvslQ8rnSlSjw2bCw_jomvnDjYTkX_gw8maVBhgVj5eM7MHPtM0zwn-DXBUl5SLNiOiD251KYFCo-aswfo8V_10-ailBPGmHZ7Jmh71vx8E8ow1x6VOU59cIAc2JR1BYe-jjdo1GPKyRXUQ4WcSs2zrXMGpEuBwcQ7dBs0smmsOcW4iD4djlcfkdU1pDHYtWNhad7fkU8ZwdjrBXNo6lNNEMEuUtvDEKyOyEKM5VnzxOtY4OL3ed58eff28_WH3fHm_eH66riznHd111JCjaDME8cZpUA85-vPDHcYtBeyE7C30nSYGuqIEcQaJ7T1hgppZMvOm8Pm65I-qSmHQec7lXRQ90DK35TONdgIqqW4Y51xLWOcO0ukZx1lTBDDZOs1XbxebF5TTt9nKFWd0pzH5fmKCi4p5ozJhYU3ll12WTL4h6kEqzVKtWal1qzUFuUiebVJQpr-eP6H_vIf9CH_UJ2iClMhFunkPPsFMR6vWg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548204338</pqid></control><display><type>article</type><title>Bismuth sulphide decorated ZnO nanorods heterostructure assembly via controlled SILAR cationic concentration for enhanced photoelectrochemical cells</title><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><creator>AL-Zahrani, A A ; Zainal, Z ; Talib, Z A ; Lim, H N ; Holi, A M</creator><creatorcontrib>AL-Zahrani, A A ; Zainal, Z ; Talib, Z A ; Lim, H N ; Holi, A M</creatorcontrib><description>The current study investigates Bi2S3 thin films coated on ZnO NRAs with varying cationic concentrations through ionic layer adsorption and reaction (SILAR) technique. XRD patterns reveal that Bi2S3 is successfully synthesised and exhibits orthorhombic structure on the wurtzite ZnO NRAs. The band gap energy (Eg) of Bi2S3/ZnO NRAs shows a notable red shift with increasing cationic concentration. The photocurrent density increases significantly with increasing concentration from 1 mM to 3 mM before decreases at higher concentration due to agglomeration of Bi2S3 NPs and formation of recombination centres. The hybrid photoanode Bi2S3/ZnO NRAs at 3 mM exhibits the highest photocurrent value (1.92 mA cm−2), which is about six times greater than that of plain ZnO NRAs (0.337 mA cm−2). The high photoconversion efficiency value of 1.65% versus 0.5 V Ag A−1g−1C−1l−1 is obtained by Bi2S3/ZnO NRAs (3 mM) in comparison with pristine ZnO NRs, mainly due to the stepwise band alignment edge and significant enhancement of morphological and optical properties. The study reveals that controlling the cationic concentration can potentially improve the photoconversion efficiency.</description><identifier>ISSN: 2053-1591</identifier><identifier>EISSN: 2053-1591</identifier><identifier>DOI: 10.1088/2053-1591/ab6e2e</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Bi2S3 ; Bismuth sulfides ; Cations ; Doppler effect ; Energy gap ; heterostructure ; Heterostructures ; Nanorods ; Optical properties ; photoconversion efficiency ; Photoelectric effect ; Photoelectric emission ; photoelectrochemical cells ; Photoelectrochemical devices ; Quantum efficiency ; Red shift ; SILAR method ; Thin films ; Wurtzite ; Zinc oxide ; ZnO NRAs</subject><ispartof>Materials research express, 2020-02, Vol.7 (2), p.25510</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-6212b523f1d4322e1f440279b4d0eaf5875e9c8b702b2d1b51cbd5acfb258b863</citedby><cites>FETCH-LOGICAL-c447t-6212b523f1d4322e1f440279b4d0eaf5875e9c8b702b2d1b51cbd5acfb258b863</cites><orcidid>0000-0003-4311-633X ; 0000-0003-2855-952X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2053-1591/ab6e2e/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2102,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>AL-Zahrani, A A</creatorcontrib><creatorcontrib>Zainal, Z</creatorcontrib><creatorcontrib>Talib, Z A</creatorcontrib><creatorcontrib>Lim, H N</creatorcontrib><creatorcontrib>Holi, A M</creatorcontrib><title>Bismuth sulphide decorated ZnO nanorods heterostructure assembly via controlled SILAR cationic concentration for enhanced photoelectrochemical cells</title><title>Materials research express</title><addtitle>MRX</addtitle><addtitle>Mater. Res. Express</addtitle><description>The current study investigates Bi2S3 thin films coated on ZnO NRAs with varying cationic concentrations through ionic layer adsorption and reaction (SILAR) technique. XRD patterns reveal that Bi2S3 is successfully synthesised and exhibits orthorhombic structure on the wurtzite ZnO NRAs. The band gap energy (Eg) of Bi2S3/ZnO NRAs shows a notable red shift with increasing cationic concentration. The photocurrent density increases significantly with increasing concentration from 1 mM to 3 mM before decreases at higher concentration due to agglomeration of Bi2S3 NPs and formation of recombination centres. The hybrid photoanode Bi2S3/ZnO NRAs at 3 mM exhibits the highest photocurrent value (1.92 mA cm−2), which is about six times greater than that of plain ZnO NRAs (0.337 mA cm−2). The high photoconversion efficiency value of 1.65% versus 0.5 V Ag A−1g−1C−1l−1 is obtained by Bi2S3/ZnO NRAs (3 mM) in comparison with pristine ZnO NRs, mainly due to the stepwise band alignment edge and significant enhancement of morphological and optical properties. The study reveals that controlling the cationic concentration can potentially improve the photoconversion efficiency.</description><subject>Bi2S3</subject><subject>Bismuth sulfides</subject><subject>Cations</subject><subject>Doppler effect</subject><subject>Energy gap</subject><subject>heterostructure</subject><subject>Heterostructures</subject><subject>Nanorods</subject><subject>Optical properties</subject><subject>photoconversion efficiency</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>photoelectrochemical cells</subject><subject>Photoelectrochemical devices</subject><subject>Quantum efficiency</subject><subject>Red shift</subject><subject>SILAR method</subject><subject>Thin films</subject><subject>Wurtzite</subject><subject>Zinc oxide</subject><subject>ZnO NRAs</subject><issn>2053-1591</issn><issn>2053-1591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNp9Uctu1TAUjBBIVKV7lpaQWHGpn4nvslQ8rnSlSjw2bCw_jomvnDjYTkX_gw8maVBhgVj5eM7MHPtM0zwn-DXBUl5SLNiOiD251KYFCo-aswfo8V_10-ailBPGmHZ7Jmh71vx8E8ow1x6VOU59cIAc2JR1BYe-jjdo1GPKyRXUQ4WcSs2zrXMGpEuBwcQ7dBs0smmsOcW4iD4djlcfkdU1pDHYtWNhad7fkU8ZwdjrBXNo6lNNEMEuUtvDEKyOyEKM5VnzxOtY4OL3ed58eff28_WH3fHm_eH66riznHd111JCjaDME8cZpUA85-vPDHcYtBeyE7C30nSYGuqIEcQaJ7T1hgppZMvOm8Pm65I-qSmHQec7lXRQ90DK35TONdgIqqW4Y51xLWOcO0ukZx1lTBDDZOs1XbxebF5TTt9nKFWd0pzH5fmKCi4p5ozJhYU3ll12WTL4h6kEqzVKtWal1qzUFuUiebVJQpr-eP6H_vIf9CH_UJ2iClMhFunkPPsFMR6vWg</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>AL-Zahrani, A A</creator><creator>Zainal, Z</creator><creator>Talib, Z A</creator><creator>Lim, H N</creator><creator>Holi, A M</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4311-633X</orcidid><orcidid>https://orcid.org/0000-0003-2855-952X</orcidid></search><sort><creationdate>20200201</creationdate><title>Bismuth sulphide decorated ZnO nanorods heterostructure assembly via controlled SILAR cationic concentration for enhanced photoelectrochemical cells</title><author>AL-Zahrani, A A ; Zainal, Z ; Talib, Z A ; Lim, H N ; Holi, A M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-6212b523f1d4322e1f440279b4d0eaf5875e9c8b702b2d1b51cbd5acfb258b863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bi2S3</topic><topic>Bismuth sulfides</topic><topic>Cations</topic><topic>Doppler effect</topic><topic>Energy gap</topic><topic>heterostructure</topic><topic>Heterostructures</topic><topic>Nanorods</topic><topic>Optical properties</topic><topic>photoconversion efficiency</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>photoelectrochemical cells</topic><topic>Photoelectrochemical devices</topic><topic>Quantum efficiency</topic><topic>Red shift</topic><topic>SILAR method</topic><topic>Thin films</topic><topic>Wurtzite</topic><topic>Zinc oxide</topic><topic>ZnO NRAs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>AL-Zahrani, A A</creatorcontrib><creatorcontrib>Zainal, Z</creatorcontrib><creatorcontrib>Talib, Z A</creatorcontrib><creatorcontrib>Lim, H N</creatorcontrib><creatorcontrib>Holi, A M</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Materials research express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>AL-Zahrani, A A</au><au>Zainal, Z</au><au>Talib, Z A</au><au>Lim, H N</au><au>Holi, A M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bismuth sulphide decorated ZnO nanorods heterostructure assembly via controlled SILAR cationic concentration for enhanced photoelectrochemical cells</atitle><jtitle>Materials research express</jtitle><stitle>MRX</stitle><addtitle>Mater. Res. Express</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>7</volume><issue>2</issue><spage>25510</spage><pages>25510-</pages><issn>2053-1591</issn><eissn>2053-1591</eissn><abstract>The current study investigates Bi2S3 thin films coated on ZnO NRAs with varying cationic concentrations through ionic layer adsorption and reaction (SILAR) technique. XRD patterns reveal that Bi2S3 is successfully synthesised and exhibits orthorhombic structure on the wurtzite ZnO NRAs. The band gap energy (Eg) of Bi2S3/ZnO NRAs shows a notable red shift with increasing cationic concentration. The photocurrent density increases significantly with increasing concentration from 1 mM to 3 mM before decreases at higher concentration due to agglomeration of Bi2S3 NPs and formation of recombination centres. The hybrid photoanode Bi2S3/ZnO NRAs at 3 mM exhibits the highest photocurrent value (1.92 mA cm−2), which is about six times greater than that of plain ZnO NRAs (0.337 mA cm−2). The high photoconversion efficiency value of 1.65% versus 0.5 V Ag A−1g−1C−1l−1 is obtained by Bi2S3/ZnO NRAs (3 mM) in comparison with pristine ZnO NRs, mainly due to the stepwise band alignment edge and significant enhancement of morphological and optical properties. The study reveals that controlling the cationic concentration can potentially improve the photoconversion efficiency.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2053-1591/ab6e2e</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4311-633X</orcidid><orcidid>https://orcid.org/0000-0003-2855-952X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2053-1591 |
ispartof | Materials research express, 2020-02, Vol.7 (2), p.25510 |
issn | 2053-1591 2053-1591 |
language | eng |
recordid | cdi_proquest_journals_2548204338 |
source | DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; IOPscience extra |
subjects | Bi2S3 Bismuth sulfides Cations Doppler effect Energy gap heterostructure Heterostructures Nanorods Optical properties photoconversion efficiency Photoelectric effect Photoelectric emission photoelectrochemical cells Photoelectrochemical devices Quantum efficiency Red shift SILAR method Thin films Wurtzite Zinc oxide ZnO NRAs |
title | Bismuth sulphide decorated ZnO nanorods heterostructure assembly via controlled SILAR cationic concentration for enhanced photoelectrochemical cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A53%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bismuth%20sulphide%20decorated%20ZnO%20nanorods%20heterostructure%20assembly%20via%20controlled%20SILAR%20cationic%20concentration%20for%20enhanced%20photoelectrochemical%20cells&rft.jtitle=Materials%20research%20express&rft.au=AL-Zahrani,%20A%20A&rft.date=2020-02-01&rft.volume=7&rft.issue=2&rft.spage=25510&rft.pages=25510-&rft.issn=2053-1591&rft.eissn=2053-1591&rft_id=info:doi/10.1088/2053-1591/ab6e2e&rft_dat=%3Cproquest_iop_j%3E2548204338%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548204338&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_620737bd63344dc18f3723351b386fa2&rfr_iscdi=true |