Bismuth sulphide decorated ZnO nanorods heterostructure assembly via controlled SILAR cationic concentration for enhanced photoelectrochemical cells

The current study investigates Bi2S3 thin films coated on ZnO NRAs with varying cationic concentrations through ionic layer adsorption and reaction (SILAR) technique. XRD patterns reveal that Bi2S3 is successfully synthesised and exhibits orthorhombic structure on the wurtzite ZnO NRAs. The band gap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials research express 2020-02, Vol.7 (2), p.25510
Hauptverfasser: AL-Zahrani, A A, Zainal, Z, Talib, Z A, Lim, H N, Holi, A M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 25510
container_title Materials research express
container_volume 7
creator AL-Zahrani, A A
Zainal, Z
Talib, Z A
Lim, H N
Holi, A M
description The current study investigates Bi2S3 thin films coated on ZnO NRAs with varying cationic concentrations through ionic layer adsorption and reaction (SILAR) technique. XRD patterns reveal that Bi2S3 is successfully synthesised and exhibits orthorhombic structure on the wurtzite ZnO NRAs. The band gap energy (Eg) of Bi2S3/ZnO NRAs shows a notable red shift with increasing cationic concentration. The photocurrent density increases significantly with increasing concentration from 1 mM to 3 mM before decreases at higher concentration due to agglomeration of Bi2S3 NPs and formation of recombination centres. The hybrid photoanode Bi2S3/ZnO NRAs at 3 mM exhibits the highest photocurrent value (1.92 mA cm−2), which is about six times greater than that of plain ZnO NRAs (0.337 mA cm−2). The high photoconversion efficiency value of 1.65% versus 0.5 V Ag A−1g−1C−1l−1 is obtained by Bi2S3/ZnO NRAs (3 mM) in comparison with pristine ZnO NRs, mainly due to the stepwise band alignment edge and significant enhancement of morphological and optical properties. The study reveals that controlling the cationic concentration can potentially improve the photoconversion efficiency.
doi_str_mv 10.1088/2053-1591/ab6e2e
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2548204338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_620737bd63344dc18f3723351b386fa2</doaj_id><sourcerecordid>2548204338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-6212b523f1d4322e1f440279b4d0eaf5875e9c8b702b2d1b51cbd5acfb258b863</originalsourceid><addsrcrecordid>eNp9Uctu1TAUjBBIVKV7lpaQWHGpn4nvslQ8rnSlSjw2bCw_jomvnDjYTkX_gw8maVBhgVj5eM7MHPtM0zwn-DXBUl5SLNiOiD251KYFCo-aswfo8V_10-ailBPGmHZ7Jmh71vx8E8ow1x6VOU59cIAc2JR1BYe-jjdo1GPKyRXUQ4WcSs2zrXMGpEuBwcQ7dBs0smmsOcW4iD4djlcfkdU1pDHYtWNhad7fkU8ZwdjrBXNo6lNNEMEuUtvDEKyOyEKM5VnzxOtY4OL3ed58eff28_WH3fHm_eH66riznHd111JCjaDME8cZpUA85-vPDHcYtBeyE7C30nSYGuqIEcQaJ7T1hgppZMvOm8Pm65I-qSmHQec7lXRQ90DK35TONdgIqqW4Y51xLWOcO0ukZx1lTBDDZOs1XbxebF5TTt9nKFWd0pzH5fmKCi4p5ozJhYU3ll12WTL4h6kEqzVKtWal1qzUFuUiebVJQpr-eP6H_vIf9CH_UJ2iClMhFunkPPsFMR6vWg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548204338</pqid></control><display><type>article</type><title>Bismuth sulphide decorated ZnO nanorods heterostructure assembly via controlled SILAR cationic concentration for enhanced photoelectrochemical cells</title><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><creator>AL-Zahrani, A A ; Zainal, Z ; Talib, Z A ; Lim, H N ; Holi, A M</creator><creatorcontrib>AL-Zahrani, A A ; Zainal, Z ; Talib, Z A ; Lim, H N ; Holi, A M</creatorcontrib><description>The current study investigates Bi2S3 thin films coated on ZnO NRAs with varying cationic concentrations through ionic layer adsorption and reaction (SILAR) technique. XRD patterns reveal that Bi2S3 is successfully synthesised and exhibits orthorhombic structure on the wurtzite ZnO NRAs. The band gap energy (Eg) of Bi2S3/ZnO NRAs shows a notable red shift with increasing cationic concentration. The photocurrent density increases significantly with increasing concentration from 1 mM to 3 mM before decreases at higher concentration due to agglomeration of Bi2S3 NPs and formation of recombination centres. The hybrid photoanode Bi2S3/ZnO NRAs at 3 mM exhibits the highest photocurrent value (1.92 mA cm−2), which is about six times greater than that of plain ZnO NRAs (0.337 mA cm−2). The high photoconversion efficiency value of 1.65% versus 0.5 V Ag A−1g−1C−1l−1 is obtained by Bi2S3/ZnO NRAs (3 mM) in comparison with pristine ZnO NRs, mainly due to the stepwise band alignment edge and significant enhancement of morphological and optical properties. The study reveals that controlling the cationic concentration can potentially improve the photoconversion efficiency.</description><identifier>ISSN: 2053-1591</identifier><identifier>EISSN: 2053-1591</identifier><identifier>DOI: 10.1088/2053-1591/ab6e2e</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Bi2S3 ; Bismuth sulfides ; Cations ; Doppler effect ; Energy gap ; heterostructure ; Heterostructures ; Nanorods ; Optical properties ; photoconversion efficiency ; Photoelectric effect ; Photoelectric emission ; photoelectrochemical cells ; Photoelectrochemical devices ; Quantum efficiency ; Red shift ; SILAR method ; Thin films ; Wurtzite ; Zinc oxide ; ZnO NRAs</subject><ispartof>Materials research express, 2020-02, Vol.7 (2), p.25510</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-6212b523f1d4322e1f440279b4d0eaf5875e9c8b702b2d1b51cbd5acfb258b863</citedby><cites>FETCH-LOGICAL-c447t-6212b523f1d4322e1f440279b4d0eaf5875e9c8b702b2d1b51cbd5acfb258b863</cites><orcidid>0000-0003-4311-633X ; 0000-0003-2855-952X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2053-1591/ab6e2e/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2102,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>AL-Zahrani, A A</creatorcontrib><creatorcontrib>Zainal, Z</creatorcontrib><creatorcontrib>Talib, Z A</creatorcontrib><creatorcontrib>Lim, H N</creatorcontrib><creatorcontrib>Holi, A M</creatorcontrib><title>Bismuth sulphide decorated ZnO nanorods heterostructure assembly via controlled SILAR cationic concentration for enhanced photoelectrochemical cells</title><title>Materials research express</title><addtitle>MRX</addtitle><addtitle>Mater. Res. Express</addtitle><description>The current study investigates Bi2S3 thin films coated on ZnO NRAs with varying cationic concentrations through ionic layer adsorption and reaction (SILAR) technique. XRD patterns reveal that Bi2S3 is successfully synthesised and exhibits orthorhombic structure on the wurtzite ZnO NRAs. The band gap energy (Eg) of Bi2S3/ZnO NRAs shows a notable red shift with increasing cationic concentration. The photocurrent density increases significantly with increasing concentration from 1 mM to 3 mM before decreases at higher concentration due to agglomeration of Bi2S3 NPs and formation of recombination centres. The hybrid photoanode Bi2S3/ZnO NRAs at 3 mM exhibits the highest photocurrent value (1.92 mA cm−2), which is about six times greater than that of plain ZnO NRAs (0.337 mA cm−2). The high photoconversion efficiency value of 1.65% versus 0.5 V Ag A−1g−1C−1l−1 is obtained by Bi2S3/ZnO NRAs (3 mM) in comparison with pristine ZnO NRs, mainly due to the stepwise band alignment edge and significant enhancement of morphological and optical properties. The study reveals that controlling the cationic concentration can potentially improve the photoconversion efficiency.</description><subject>Bi2S3</subject><subject>Bismuth sulfides</subject><subject>Cations</subject><subject>Doppler effect</subject><subject>Energy gap</subject><subject>heterostructure</subject><subject>Heterostructures</subject><subject>Nanorods</subject><subject>Optical properties</subject><subject>photoconversion efficiency</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>photoelectrochemical cells</subject><subject>Photoelectrochemical devices</subject><subject>Quantum efficiency</subject><subject>Red shift</subject><subject>SILAR method</subject><subject>Thin films</subject><subject>Wurtzite</subject><subject>Zinc oxide</subject><subject>ZnO NRAs</subject><issn>2053-1591</issn><issn>2053-1591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNp9Uctu1TAUjBBIVKV7lpaQWHGpn4nvslQ8rnSlSjw2bCw_jomvnDjYTkX_gw8maVBhgVj5eM7MHPtM0zwn-DXBUl5SLNiOiD251KYFCo-aswfo8V_10-ailBPGmHZ7Jmh71vx8E8ow1x6VOU59cIAc2JR1BYe-jjdo1GPKyRXUQ4WcSs2zrXMGpEuBwcQ7dBs0smmsOcW4iD4djlcfkdU1pDHYtWNhad7fkU8ZwdjrBXNo6lNNEMEuUtvDEKyOyEKM5VnzxOtY4OL3ed58eff28_WH3fHm_eH66riznHd111JCjaDME8cZpUA85-vPDHcYtBeyE7C30nSYGuqIEcQaJ7T1hgppZMvOm8Pm65I-qSmHQec7lXRQ90DK35TONdgIqqW4Y51xLWOcO0ukZx1lTBDDZOs1XbxebF5TTt9nKFWd0pzH5fmKCi4p5ozJhYU3ll12WTL4h6kEqzVKtWal1qzUFuUiebVJQpr-eP6H_vIf9CH_UJ2iClMhFunkPPsFMR6vWg</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>AL-Zahrani, A A</creator><creator>Zainal, Z</creator><creator>Talib, Z A</creator><creator>Lim, H N</creator><creator>Holi, A M</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4311-633X</orcidid><orcidid>https://orcid.org/0000-0003-2855-952X</orcidid></search><sort><creationdate>20200201</creationdate><title>Bismuth sulphide decorated ZnO nanorods heterostructure assembly via controlled SILAR cationic concentration for enhanced photoelectrochemical cells</title><author>AL-Zahrani, A A ; Zainal, Z ; Talib, Z A ; Lim, H N ; Holi, A M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-6212b523f1d4322e1f440279b4d0eaf5875e9c8b702b2d1b51cbd5acfb258b863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bi2S3</topic><topic>Bismuth sulfides</topic><topic>Cations</topic><topic>Doppler effect</topic><topic>Energy gap</topic><topic>heterostructure</topic><topic>Heterostructures</topic><topic>Nanorods</topic><topic>Optical properties</topic><topic>photoconversion efficiency</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>photoelectrochemical cells</topic><topic>Photoelectrochemical devices</topic><topic>Quantum efficiency</topic><topic>Red shift</topic><topic>SILAR method</topic><topic>Thin films</topic><topic>Wurtzite</topic><topic>Zinc oxide</topic><topic>ZnO NRAs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>AL-Zahrani, A A</creatorcontrib><creatorcontrib>Zainal, Z</creatorcontrib><creatorcontrib>Talib, Z A</creatorcontrib><creatorcontrib>Lim, H N</creatorcontrib><creatorcontrib>Holi, A M</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Materials research express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>AL-Zahrani, A A</au><au>Zainal, Z</au><au>Talib, Z A</au><au>Lim, H N</au><au>Holi, A M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bismuth sulphide decorated ZnO nanorods heterostructure assembly via controlled SILAR cationic concentration for enhanced photoelectrochemical cells</atitle><jtitle>Materials research express</jtitle><stitle>MRX</stitle><addtitle>Mater. Res. Express</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>7</volume><issue>2</issue><spage>25510</spage><pages>25510-</pages><issn>2053-1591</issn><eissn>2053-1591</eissn><abstract>The current study investigates Bi2S3 thin films coated on ZnO NRAs with varying cationic concentrations through ionic layer adsorption and reaction (SILAR) technique. XRD patterns reveal that Bi2S3 is successfully synthesised and exhibits orthorhombic structure on the wurtzite ZnO NRAs. The band gap energy (Eg) of Bi2S3/ZnO NRAs shows a notable red shift with increasing cationic concentration. The photocurrent density increases significantly with increasing concentration from 1 mM to 3 mM before decreases at higher concentration due to agglomeration of Bi2S3 NPs and formation of recombination centres. The hybrid photoanode Bi2S3/ZnO NRAs at 3 mM exhibits the highest photocurrent value (1.92 mA cm−2), which is about six times greater than that of plain ZnO NRAs (0.337 mA cm−2). The high photoconversion efficiency value of 1.65% versus 0.5 V Ag A−1g−1C−1l−1 is obtained by Bi2S3/ZnO NRAs (3 mM) in comparison with pristine ZnO NRs, mainly due to the stepwise band alignment edge and significant enhancement of morphological and optical properties. The study reveals that controlling the cationic concentration can potentially improve the photoconversion efficiency.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2053-1591/ab6e2e</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4311-633X</orcidid><orcidid>https://orcid.org/0000-0003-2855-952X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2053-1591
ispartof Materials research express, 2020-02, Vol.7 (2), p.25510
issn 2053-1591
2053-1591
language eng
recordid cdi_proquest_journals_2548204338
source DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; IOPscience extra
subjects Bi2S3
Bismuth sulfides
Cations
Doppler effect
Energy gap
heterostructure
Heterostructures
Nanorods
Optical properties
photoconversion efficiency
Photoelectric effect
Photoelectric emission
photoelectrochemical cells
Photoelectrochemical devices
Quantum efficiency
Red shift
SILAR method
Thin films
Wurtzite
Zinc oxide
ZnO NRAs
title Bismuth sulphide decorated ZnO nanorods heterostructure assembly via controlled SILAR cationic concentration for enhanced photoelectrochemical cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A53%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bismuth%20sulphide%20decorated%20ZnO%20nanorods%20heterostructure%20assembly%20via%20controlled%20SILAR%20cationic%20concentration%20for%20enhanced%20photoelectrochemical%20cells&rft.jtitle=Materials%20research%20express&rft.au=AL-Zahrani,%20A%20A&rft.date=2020-02-01&rft.volume=7&rft.issue=2&rft.spage=25510&rft.pages=25510-&rft.issn=2053-1591&rft.eissn=2053-1591&rft_id=info:doi/10.1088/2053-1591/ab6e2e&rft_dat=%3Cproquest_iop_j%3E2548204338%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548204338&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_620737bd63344dc18f3723351b386fa2&rfr_iscdi=true