Increase in Storm Activity in the Kara Sea from 1979 to 2019: Numerical Simulation Data
Wind wave modeling (WAVEWATCH III model) is used to analyze the storm activity in the Kara Sea for the period from 1979 to 2019. The NCEP/CFSR/CFSv2 reanalysis data used as forcing. Simulations realized on the nonstructural grid with a resolution of 700 m to 10 km. The quality of wind wave simulatio...
Gespeichert in:
Veröffentlicht in: | Doklady earth sciences 2021-06, Vol.498 (2), p.502-508 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 508 |
---|---|
container_issue | 2 |
container_start_page | 502 |
container_title | Doklady earth sciences |
container_volume | 498 |
creator | Myslenkov, S. A. Platonov, V. S. Silvestrova, K. P. Dobrolyubov, S. A. |
description | Wind wave modeling (WAVEWATCH III model) is used to analyze the storm activity in the Kara Sea for the period from 1979 to 2019. The NCEP/CFSR/CFSv2 reanalysis data used as forcing. Simulations realized on the nonstructural grid with a resolution of 700 m to 10 km. The quality of wind wave simulation is assessed through a comparison with direct measurements and satellite data. The storm wave frequencies are analyzed separately for each year. It is found that storms with waves more than 3 m are observed on average about 30 times a year. The frequency of storms with waves more than 3–5 m increased twofold from 1979 to 2019. The increase in the storm frequency is due to a decrease in the sea ice cover extent. Analysis of the seasonal variations in storm activity shows that the largest amount of storms is observed from July to December. A strong positive trend in the frequency of storms is observed from October to December. Storms in January, February, and March have been observed since 2005 due to the absence of ice, which contributes significantly to the ultimate increase in the storm frequency. |
doi_str_mv | 10.1134/S1028334X2106012X |
format | Article |
fullrecord | <record><control><sourceid>gale_webof</sourceid><recordid>TN_cdi_proquest_journals_2547980419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A667295697</galeid><sourcerecordid>A667295697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-caed99e500cc9c73915488624eac082dccb77ce88ac1ee755bce3ef48a29cfeb3</originalsourceid><addsrcrecordid>eNqNkE1v1DAQhiMEEqXlB3CzxBGleBw7trmtlgIVVTksiN4i7-ykuNrYxXZA_fd4CaIHVAn54NHM8_jjbZoXwE8BOvl6A1yYrpNXAnjPQVw9ao5AddCaTsnHta7j9jB_2jzL-YZzKaWyR83X84CJXCbmA9uUmCa2wuJ_-HJ36JRvxD665NiGHBtTnBhYbVmJTHCwb9jlPFHy6PZs46d574qPgb11xZ00T0a3z_T8z37cfHl39nn9ob349P58vbpoURhVWnS0s5YU54gWdWdBSWN6IckhN2KHuNUayRiHQKSV2iJ1NErjhMWRtt1x83I59zbF7zPlMtzEOYV65SCU1NZwCbZSpwt17fY0-DDGkhzWtaPJYww0-tpf9b0WVvVWVwEWAVPMOdE43CY_uXQ3AB8OgQ__BF4dszg_aRvHjJ4C0l-Pc973VoDQtQJY-_I7rHWcQ6nqq_9XKy0WOlciXFO6__PDr_sFi0ahUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547980419</pqid></control><display><type>article</type><title>Increase in Storm Activity in the Kara Sea from 1979 to 2019: Numerical Simulation Data</title><source>SpringerNature Journals</source><creator>Myslenkov, S. A. ; Platonov, V. S. ; Silvestrova, K. P. ; Dobrolyubov, S. A.</creator><creatorcontrib>Myslenkov, S. A. ; Platonov, V. S. ; Silvestrova, K. P. ; Dobrolyubov, S. A.</creatorcontrib><description>Wind wave modeling (WAVEWATCH III model) is used to analyze the storm activity in the Kara Sea for the period from 1979 to 2019. The NCEP/CFSR/CFSv2 reanalysis data used as forcing. Simulations realized on the nonstructural grid with a resolution of 700 m to 10 km. The quality of wind wave simulation is assessed through a comparison with direct measurements and satellite data. The storm wave frequencies are analyzed separately for each year. It is found that storms with waves more than 3 m are observed on average about 30 times a year. The frequency of storms with waves more than 3–5 m increased twofold from 1979 to 2019. The increase in the storm frequency is due to a decrease in the sea ice cover extent. Analysis of the seasonal variations in storm activity shows that the largest amount of storms is observed from July to December. A strong positive trend in the frequency of storms is observed from October to December. Storms in January, February, and March have been observed since 2005 due to the absence of ice, which contributes significantly to the ultimate increase in the storm frequency.</description><identifier>ISSN: 1028-334X</identifier><identifier>EISSN: 1531-8354</identifier><identifier>DOI: 10.1134/S1028334X2106012X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Analysis ; Earth and Environmental Science ; Earth Sciences ; Geology ; Geosciences, Multidisciplinary ; Ice cover ; Mathematical models ; Numerical analysis ; Numerical simulations ; Oceanology ; Physical Sciences ; Satellite data ; Science & Technology ; Sea ice ; Seasonal variation ; Seasonal variations ; Simulation ; Storms ; Wind ; Wind waves</subject><ispartof>Doklady earth sciences, 2021-06, Vol.498 (2), p.502-508</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 1028-334X, Doklady Earth Sciences, 2021, Vol. 498, Part 2, pp. 502–508. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2021, published in Doklady Rossiiskoi Akademii Nauk. Nauki o Zemle, 2021, Vol. 498, No. 2, pp. 175–182.</rights><rights>COPYRIGHT 2021 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>5</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000669212700011</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c285t-caed99e500cc9c73915488624eac082dccb77ce88ac1ee755bce3ef48a29cfeb3</citedby><cites>FETCH-LOGICAL-c285t-caed99e500cc9c73915488624eac082dccb77ce88ac1ee755bce3ef48a29cfeb3</cites><orcidid>0000-0002-7256-1451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1028334X2106012X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1028334X2106012X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Myslenkov, S. A.</creatorcontrib><creatorcontrib>Platonov, V. S.</creatorcontrib><creatorcontrib>Silvestrova, K. P.</creatorcontrib><creatorcontrib>Dobrolyubov, S. A.</creatorcontrib><title>Increase in Storm Activity in the Kara Sea from 1979 to 2019: Numerical Simulation Data</title><title>Doklady earth sciences</title><addtitle>Dokl. Earth Sc</addtitle><addtitle>DOKL EARTH SCI</addtitle><description>Wind wave modeling (WAVEWATCH III model) is used to analyze the storm activity in the Kara Sea for the period from 1979 to 2019. The NCEP/CFSR/CFSv2 reanalysis data used as forcing. Simulations realized on the nonstructural grid with a resolution of 700 m to 10 km. The quality of wind wave simulation is assessed through a comparison with direct measurements and satellite data. The storm wave frequencies are analyzed separately for each year. It is found that storms with waves more than 3 m are observed on average about 30 times a year. The frequency of storms with waves more than 3–5 m increased twofold from 1979 to 2019. The increase in the storm frequency is due to a decrease in the sea ice cover extent. Analysis of the seasonal variations in storm activity shows that the largest amount of storms is observed from July to December. A strong positive trend in the frequency of storms is observed from October to December. Storms in January, February, and March have been observed since 2005 due to the absence of ice, which contributes significantly to the ultimate increase in the storm frequency.</description><subject>Analysis</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geology</subject><subject>Geosciences, Multidisciplinary</subject><subject>Ice cover</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Numerical simulations</subject><subject>Oceanology</subject><subject>Physical Sciences</subject><subject>Satellite data</subject><subject>Science & Technology</subject><subject>Sea ice</subject><subject>Seasonal variation</subject><subject>Seasonal variations</subject><subject>Simulation</subject><subject>Storms</subject><subject>Wind</subject><subject>Wind waves</subject><issn>1028-334X</issn><issn>1531-8354</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkE1v1DAQhiMEEqXlB3CzxBGleBw7trmtlgIVVTksiN4i7-ykuNrYxXZA_fd4CaIHVAn54NHM8_jjbZoXwE8BOvl6A1yYrpNXAnjPQVw9ao5AddCaTsnHta7j9jB_2jzL-YZzKaWyR83X84CJXCbmA9uUmCa2wuJ_-HJ36JRvxD665NiGHBtTnBhYbVmJTHCwb9jlPFHy6PZs46d574qPgb11xZ00T0a3z_T8z37cfHl39nn9ob349P58vbpoURhVWnS0s5YU54gWdWdBSWN6IckhN2KHuNUayRiHQKSV2iJ1NErjhMWRtt1x83I59zbF7zPlMtzEOYV65SCU1NZwCbZSpwt17fY0-DDGkhzWtaPJYww0-tpf9b0WVvVWVwEWAVPMOdE43CY_uXQ3AB8OgQ__BF4dszg_aRvHjJ4C0l-Pc973VoDQtQJY-_I7rHWcQ6nqq_9XKy0WOlciXFO6__PDr_sFi0ahUg</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Myslenkov, S. A.</creator><creator>Platonov, V. S.</creator><creator>Silvestrova, K. P.</creator><creator>Dobrolyubov, S. A.</creator><general>Pleiades Publishing</general><general>Springer Nature</general><general>Springer</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-7256-1451</orcidid></search><sort><creationdate>20210601</creationdate><title>Increase in Storm Activity in the Kara Sea from 1979 to 2019: Numerical Simulation Data</title><author>Myslenkov, S. A. ; Platonov, V. S. ; Silvestrova, K. P. ; Dobrolyubov, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-caed99e500cc9c73915488624eac082dccb77ce88ac1ee755bce3ef48a29cfeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geology</topic><topic>Geosciences, Multidisciplinary</topic><topic>Ice cover</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Numerical simulations</topic><topic>Oceanology</topic><topic>Physical Sciences</topic><topic>Satellite data</topic><topic>Science & Technology</topic><topic>Sea ice</topic><topic>Seasonal variation</topic><topic>Seasonal variations</topic><topic>Simulation</topic><topic>Storms</topic><topic>Wind</topic><topic>Wind waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Myslenkov, S. A.</creatorcontrib><creatorcontrib>Platonov, V. S.</creatorcontrib><creatorcontrib>Silvestrova, K. P.</creatorcontrib><creatorcontrib>Dobrolyubov, S. A.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Doklady earth sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Myslenkov, S. A.</au><au>Platonov, V. S.</au><au>Silvestrova, K. P.</au><au>Dobrolyubov, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increase in Storm Activity in the Kara Sea from 1979 to 2019: Numerical Simulation Data</atitle><jtitle>Doklady earth sciences</jtitle><stitle>Dokl. Earth Sc</stitle><stitle>DOKL EARTH SCI</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>498</volume><issue>2</issue><spage>502</spage><epage>508</epage><pages>502-508</pages><issn>1028-334X</issn><eissn>1531-8354</eissn><abstract>Wind wave modeling (WAVEWATCH III model) is used to analyze the storm activity in the Kara Sea for the period from 1979 to 2019. The NCEP/CFSR/CFSv2 reanalysis data used as forcing. Simulations realized on the nonstructural grid with a resolution of 700 m to 10 km. The quality of wind wave simulation is assessed through a comparison with direct measurements and satellite data. The storm wave frequencies are analyzed separately for each year. It is found that storms with waves more than 3 m are observed on average about 30 times a year. The frequency of storms with waves more than 3–5 m increased twofold from 1979 to 2019. The increase in the storm frequency is due to a decrease in the sea ice cover extent. Analysis of the seasonal variations in storm activity shows that the largest amount of storms is observed from July to December. A strong positive trend in the frequency of storms is observed from October to December. Storms in January, February, and March have been observed since 2005 due to the absence of ice, which contributes significantly to the ultimate increase in the storm frequency.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1028334X2106012X</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7256-1451</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1028-334X |
ispartof | Doklady earth sciences, 2021-06, Vol.498 (2), p.502-508 |
issn | 1028-334X 1531-8354 |
language | eng |
recordid | cdi_proquest_journals_2547980419 |
source | SpringerNature Journals |
subjects | Analysis Earth and Environmental Science Earth Sciences Geology Geosciences, Multidisciplinary Ice cover Mathematical models Numerical analysis Numerical simulations Oceanology Physical Sciences Satellite data Science & Technology Sea ice Seasonal variation Seasonal variations Simulation Storms Wind Wind waves |
title | Increase in Storm Activity in the Kara Sea from 1979 to 2019: Numerical Simulation Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A01%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increase%20in%20Storm%20Activity%20in%20the%20Kara%20Sea%20from%201979%20to%202019:%20Numerical%20Simulation%20Data&rft.jtitle=Doklady%20earth%20sciences&rft.au=Myslenkov,%20S.%20A.&rft.date=2021-06-01&rft.volume=498&rft.issue=2&rft.spage=502&rft.epage=508&rft.pages=502-508&rft.issn=1028-334X&rft.eissn=1531-8354&rft_id=info:doi/10.1134/S1028334X2106012X&rft_dat=%3Cgale_webof%3EA667295697%3C/gale_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2547980419&rft_id=info:pmid/&rft_galeid=A667295697&rfr_iscdi=true |