Effect of surface treatment on roughness and bond strength of CAD‐CAM multidirectional glass fiber‐reinforced composite resin used for implant‐supported prostheses

The study evaluated the effect of different surface treatments on the surface roughness of a new‐generation fiber‐reinforced CAD‐CAM composite resin (FRC) and its bond strength to veneered composite resin. Fifty specimens (10 mm × 10 mm × 1 mm) were prepared from FRC blocks (Trinia; Shofu) and embed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer international 2021-08, Vol.70 (8), p.1153-1158
Hauptverfasser: Kürkçüoğlu, Işın, Küçükeşmen, Hakkı Cenker, Ozkir, Serhat Emre, Yilmaz, Burak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1158
container_issue 8
container_start_page 1153
container_title Polymer international
container_volume 70
creator Kürkçüoğlu, Işın
Küçükeşmen, Hakkı Cenker
Ozkir, Serhat Emre
Yilmaz, Burak
description The study evaluated the effect of different surface treatments on the surface roughness of a new‐generation fiber‐reinforced CAD‐CAM composite resin (FRC) and its bond strength to veneered composite resin. Fifty specimens (10 mm × 10 mm × 1 mm) were prepared from FRC blocks (Trinia; Shofu) and embedded in acrylic resin. The specimens were divided into five groups (n = 10) for different surface treatments: nontreated (control), Al2O3 airborne particle abrasion, silica coating (Cojet), acid etching (H2SO4) and hydrogen peroxide (H2O2) application. Surface roughness (Ra) of the specimens was measured using a profilometer. A veneering composite resin (3 mm in diameter by 4 mm in length) was applied on the specimens. The shear bond strength between the FRC and the veneering resin was measured. A one‐way analysis of variance was used to analyze the data. The differences among the groups were analyzed with Dunn post hoc tests (α = 0.05). Surface treatments increased the surface roughness, and Al2O3 airborne particle abrasion resulted in the highest Ra value followed by H2SO4, Cojet, H2O2 and control group (P 
doi_str_mv 10.1002/pi.6173
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2547840565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2547840565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2893-1653cab1cea1cf90419be15788bc4c45cacb193da4a2d987b330eb35e82c28653</originalsourceid><addsrcrecordid>eNp1kUtOwzAURS0EEuUjtmCJAQOUYufTxMOqfCUQDGAcOc5z6yqxg58jxIwlsA22xUpwKVMmtnR97n3PuoSccDbljKUXg5nOeJntkAlnokwYT2e7ZMJEIZKKs2yfHCCuGWOVEGJCvq60BhWo0xRHr6UCGjzI0IONoqXejcuVBUQqbUsbFw-MgF2G1cazmF9-f3wu5g-0H7tgWuNjmHFWdnTZyejSpgEfEQ_GaucVtFS5fnBoAlAPaCwdMYrxjZp-6KQNkcZxGJwPUR-8w7ACBDwie1p2CMd_9yF5ub56Xtwm9483d4v5faLSSmQJnxWZkg1XILnSguVcNMCLsqoalau8UFI1XGStzGXaiqpssoxBkxVQpTEgmg_J6TY3jn4dAUO9dqOPP8I6LfKyylnxS51tKRUXRA-6HrzppX-vOas3PdSDqTc9RPJ8S76ZDt7_w-qnu1_6B_dvj2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547840565</pqid></control><display><type>article</type><title>Effect of surface treatment on roughness and bond strength of CAD‐CAM multidirectional glass fiber‐reinforced composite resin used for implant‐supported prostheses</title><source>Wiley Online Library All Journals</source><creator>Kürkçüoğlu, Işın ; Küçükeşmen, Hakkı Cenker ; Ozkir, Serhat Emre ; Yilmaz, Burak</creator><creatorcontrib>Kürkçüoğlu, Işın ; Küçükeşmen, Hakkı Cenker ; Ozkir, Serhat Emre ; Yilmaz, Burak</creatorcontrib><description>The study evaluated the effect of different surface treatments on the surface roughness of a new‐generation fiber‐reinforced CAD‐CAM composite resin (FRC) and its bond strength to veneered composite resin. Fifty specimens (10 mm × 10 mm × 1 mm) were prepared from FRC blocks (Trinia; Shofu) and embedded in acrylic resin. The specimens were divided into five groups (n = 10) for different surface treatments: nontreated (control), Al2O3 airborne particle abrasion, silica coating (Cojet), acid etching (H2SO4) and hydrogen peroxide (H2O2) application. Surface roughness (Ra) of the specimens was measured using a profilometer. A veneering composite resin (3 mm in diameter by 4 mm in length) was applied on the specimens. The shear bond strength between the FRC and the veneering resin was measured. A one‐way analysis of variance was used to analyze the data. The differences among the groups were analyzed with Dunn post hoc tests (α = 0.05). Surface treatments increased the surface roughness, and Al2O3 airborne particle abrasion resulted in the highest Ra value followed by H2SO4, Cojet, H2O2 and control group (P &lt; 0.05). The highest shear bond strength was achieved with Al2O3 application (P &lt; 0.05). Cojet and H2O2 applications resulted in higher shear bond strength than the control (P &lt; 0.05). H2SO4 application resulted in lower bond strength than the control (P &lt; 0.05). Surface treatments increased the surface roughness of FRC. Al2O3 and silica coating increased the surface roughness more than the chemical applications. The tested surface treatments can be used to increase the bond strength except for the H2SO4 application. © 2021 Society of Chemical Industry Various surface treatments, but not H2SO4 application, can be used to increase the bond strength between CAD‐CAM multidirectional glass fiber‐reinforced polymer and veneering composite resin.</description><identifier>ISSN: 0959-8103</identifier><identifier>EISSN: 1097-0126</identifier><identifier>DOI: 10.1002/pi.6173</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Abrasion ; Acrylic resins ; Aluminum oxide ; Bonding strength ; Composite materials ; Diameters ; Etching ; fiber‐reinforced composite ; Glass fiber reinforced plastics ; Hydrogen peroxide ; Profilometers ; Prostheses ; Prosthetics ; Shear ; Silicon dioxide ; Sulfuric acid ; Surface roughness ; Surface treatment ; Trinia ; Variance analysis ; Veneering</subject><ispartof>Polymer international, 2021-08, Vol.70 (8), p.1153-1158</ispartof><rights>2021 Society of Chemical Industry</rights><rights>Copyright © 2021 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2893-1653cab1cea1cf90419be15788bc4c45cacb193da4a2d987b330eb35e82c28653</citedby><cites>FETCH-LOGICAL-c2893-1653cab1cea1cf90419be15788bc4c45cacb193da4a2d987b330eb35e82c28653</cites><orcidid>0000-0002-7101-363X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpi.6173$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpi.6173$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Kürkçüoğlu, Işın</creatorcontrib><creatorcontrib>Küçükeşmen, Hakkı Cenker</creatorcontrib><creatorcontrib>Ozkir, Serhat Emre</creatorcontrib><creatorcontrib>Yilmaz, Burak</creatorcontrib><title>Effect of surface treatment on roughness and bond strength of CAD‐CAM multidirectional glass fiber‐reinforced composite resin used for implant‐supported prostheses</title><title>Polymer international</title><description>The study evaluated the effect of different surface treatments on the surface roughness of a new‐generation fiber‐reinforced CAD‐CAM composite resin (FRC) and its bond strength to veneered composite resin. Fifty specimens (10 mm × 10 mm × 1 mm) were prepared from FRC blocks (Trinia; Shofu) and embedded in acrylic resin. The specimens were divided into five groups (n = 10) for different surface treatments: nontreated (control), Al2O3 airborne particle abrasion, silica coating (Cojet), acid etching (H2SO4) and hydrogen peroxide (H2O2) application. Surface roughness (Ra) of the specimens was measured using a profilometer. A veneering composite resin (3 mm in diameter by 4 mm in length) was applied on the specimens. The shear bond strength between the FRC and the veneering resin was measured. A one‐way analysis of variance was used to analyze the data. The differences among the groups were analyzed with Dunn post hoc tests (α = 0.05). Surface treatments increased the surface roughness, and Al2O3 airborne particle abrasion resulted in the highest Ra value followed by H2SO4, Cojet, H2O2 and control group (P &lt; 0.05). The highest shear bond strength was achieved with Al2O3 application (P &lt; 0.05). Cojet and H2O2 applications resulted in higher shear bond strength than the control (P &lt; 0.05). H2SO4 application resulted in lower bond strength than the control (P &lt; 0.05). Surface treatments increased the surface roughness of FRC. Al2O3 and silica coating increased the surface roughness more than the chemical applications. The tested surface treatments can be used to increase the bond strength except for the H2SO4 application. © 2021 Society of Chemical Industry Various surface treatments, but not H2SO4 application, can be used to increase the bond strength between CAD‐CAM multidirectional glass fiber‐reinforced polymer and veneering composite resin.</description><subject>Abrasion</subject><subject>Acrylic resins</subject><subject>Aluminum oxide</subject><subject>Bonding strength</subject><subject>Composite materials</subject><subject>Diameters</subject><subject>Etching</subject><subject>fiber‐reinforced composite</subject><subject>Glass fiber reinforced plastics</subject><subject>Hydrogen peroxide</subject><subject>Profilometers</subject><subject>Prostheses</subject><subject>Prosthetics</subject><subject>Shear</subject><subject>Silicon dioxide</subject><subject>Sulfuric acid</subject><subject>Surface roughness</subject><subject>Surface treatment</subject><subject>Trinia</subject><subject>Variance analysis</subject><subject>Veneering</subject><issn>0959-8103</issn><issn>1097-0126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kUtOwzAURS0EEuUjtmCJAQOUYufTxMOqfCUQDGAcOc5z6yqxg58jxIwlsA22xUpwKVMmtnR97n3PuoSccDbljKUXg5nOeJntkAlnokwYT2e7ZMJEIZKKs2yfHCCuGWOVEGJCvq60BhWo0xRHr6UCGjzI0IONoqXejcuVBUQqbUsbFw-MgF2G1cazmF9-f3wu5g-0H7tgWuNjmHFWdnTZyejSpgEfEQ_GaucVtFS5fnBoAlAPaCwdMYrxjZp-6KQNkcZxGJwPUR-8w7ACBDwie1p2CMd_9yF5ub56Xtwm9483d4v5faLSSmQJnxWZkg1XILnSguVcNMCLsqoalau8UFI1XGStzGXaiqpssoxBkxVQpTEgmg_J6TY3jn4dAUO9dqOPP8I6LfKyylnxS51tKRUXRA-6HrzppX-vOas3PdSDqTc9RPJ8S76ZDt7_w-qnu1_6B_dvj2A</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Kürkçüoğlu, Işın</creator><creator>Küçükeşmen, Hakkı Cenker</creator><creator>Ozkir, Serhat Emre</creator><creator>Yilmaz, Burak</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-7101-363X</orcidid></search><sort><creationdate>202108</creationdate><title>Effect of surface treatment on roughness and bond strength of CAD‐CAM multidirectional glass fiber‐reinforced composite resin used for implant‐supported prostheses</title><author>Kürkçüoğlu, Işın ; Küçükeşmen, Hakkı Cenker ; Ozkir, Serhat Emre ; Yilmaz, Burak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2893-1653cab1cea1cf90419be15788bc4c45cacb193da4a2d987b330eb35e82c28653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abrasion</topic><topic>Acrylic resins</topic><topic>Aluminum oxide</topic><topic>Bonding strength</topic><topic>Composite materials</topic><topic>Diameters</topic><topic>Etching</topic><topic>fiber‐reinforced composite</topic><topic>Glass fiber reinforced plastics</topic><topic>Hydrogen peroxide</topic><topic>Profilometers</topic><topic>Prostheses</topic><topic>Prosthetics</topic><topic>Shear</topic><topic>Silicon dioxide</topic><topic>Sulfuric acid</topic><topic>Surface roughness</topic><topic>Surface treatment</topic><topic>Trinia</topic><topic>Variance analysis</topic><topic>Veneering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kürkçüoğlu, Işın</creatorcontrib><creatorcontrib>Küçükeşmen, Hakkı Cenker</creatorcontrib><creatorcontrib>Ozkir, Serhat Emre</creatorcontrib><creatorcontrib>Yilmaz, Burak</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kürkçüoğlu, Işın</au><au>Küçükeşmen, Hakkı Cenker</au><au>Ozkir, Serhat Emre</au><au>Yilmaz, Burak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of surface treatment on roughness and bond strength of CAD‐CAM multidirectional glass fiber‐reinforced composite resin used for implant‐supported prostheses</atitle><jtitle>Polymer international</jtitle><date>2021-08</date><risdate>2021</risdate><volume>70</volume><issue>8</issue><spage>1153</spage><epage>1158</epage><pages>1153-1158</pages><issn>0959-8103</issn><eissn>1097-0126</eissn><abstract>The study evaluated the effect of different surface treatments on the surface roughness of a new‐generation fiber‐reinforced CAD‐CAM composite resin (FRC) and its bond strength to veneered composite resin. Fifty specimens (10 mm × 10 mm × 1 mm) were prepared from FRC blocks (Trinia; Shofu) and embedded in acrylic resin. The specimens were divided into five groups (n = 10) for different surface treatments: nontreated (control), Al2O3 airborne particle abrasion, silica coating (Cojet), acid etching (H2SO4) and hydrogen peroxide (H2O2) application. Surface roughness (Ra) of the specimens was measured using a profilometer. A veneering composite resin (3 mm in diameter by 4 mm in length) was applied on the specimens. The shear bond strength between the FRC and the veneering resin was measured. A one‐way analysis of variance was used to analyze the data. The differences among the groups were analyzed with Dunn post hoc tests (α = 0.05). Surface treatments increased the surface roughness, and Al2O3 airborne particle abrasion resulted in the highest Ra value followed by H2SO4, Cojet, H2O2 and control group (P &lt; 0.05). The highest shear bond strength was achieved with Al2O3 application (P &lt; 0.05). Cojet and H2O2 applications resulted in higher shear bond strength than the control (P &lt; 0.05). H2SO4 application resulted in lower bond strength than the control (P &lt; 0.05). Surface treatments increased the surface roughness of FRC. Al2O3 and silica coating increased the surface roughness more than the chemical applications. The tested surface treatments can be used to increase the bond strength except for the H2SO4 application. © 2021 Society of Chemical Industry Various surface treatments, but not H2SO4 application, can be used to increase the bond strength between CAD‐CAM multidirectional glass fiber‐reinforced polymer and veneering composite resin.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/pi.6173</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7101-363X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0959-8103
ispartof Polymer international, 2021-08, Vol.70 (8), p.1153-1158
issn 0959-8103
1097-0126
language eng
recordid cdi_proquest_journals_2547840565
source Wiley Online Library All Journals
subjects Abrasion
Acrylic resins
Aluminum oxide
Bonding strength
Composite materials
Diameters
Etching
fiber‐reinforced composite
Glass fiber reinforced plastics
Hydrogen peroxide
Profilometers
Prostheses
Prosthetics
Shear
Silicon dioxide
Sulfuric acid
Surface roughness
Surface treatment
Trinia
Variance analysis
Veneering
title Effect of surface treatment on roughness and bond strength of CAD‐CAM multidirectional glass fiber‐reinforced composite resin used for implant‐supported prostheses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T11%3A54%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20surface%20treatment%20on%20roughness%20and%20bond%20strength%20of%20CAD%E2%80%90CAM%20multidirectional%20glass%20fiber%E2%80%90reinforced%20composite%20resin%20used%20for%20implant%E2%80%90supported%20prostheses&rft.jtitle=Polymer%20international&rft.au=K%C3%BCrk%C3%A7%C3%BCo%C4%9Flu,%20I%C5%9F%C4%B1n&rft.date=2021-08&rft.volume=70&rft.issue=8&rft.spage=1153&rft.epage=1158&rft.pages=1153-1158&rft.issn=0959-8103&rft.eissn=1097-0126&rft_id=info:doi/10.1002/pi.6173&rft_dat=%3Cproquest_cross%3E2547840565%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2547840565&rft_id=info:pmid/&rfr_iscdi=true