Mars curiosity rover mobility trends during the first 7 years

NASA's Mars Science Laboratory (MSL) Curiosity rover landed on Mars on August 6, 2012. In the 7 years between landing and August 6, 2019 (sol 2488), Curiosity has driven 21,318.5 m over a variety of terrain types and slopes, employing multiple drive modes with varying amounts of onboard autonom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of field robotics 2021-08, Vol.38 (5), p.759-800
Hauptverfasser: Rankin, Arturo, Maimone, Mark, Biesiadecki, Jeffrey, Patel, Nikunj, Levine, Dan, Toupet, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 800
container_issue 5
container_start_page 759
container_title Journal of field robotics
container_volume 38
creator Rankin, Arturo
Maimone, Mark
Biesiadecki, Jeffrey
Patel, Nikunj
Levine, Dan
Toupet, Olivier
description NASA's Mars Science Laboratory (MSL) Curiosity rover landed on Mars on August 6, 2012. In the 7 years between landing and August 6, 2019 (sol 2488), Curiosity has driven 21,318.5 m over a variety of terrain types and slopes, employing multiple drive modes with varying amounts of onboard autonomy. Curiosity's drive distances each sol have ranged from its shortest drive of 2.6 cm to its longest drive of 142.5 m, with an average drive distance of 28.9 m. Real‐time human intervention is not possible during Curiosity's drives due to the latency in uplinking commands and downlinking telemetry. Instead, the operations team relies on Curiosity's fault protection, autonomous navigation, and visual odometry software to keep the rover safe during drives. During its first 7 years on Mars, Curiosity has attempted 738 drives. While 622 drives ran to completion, 116 drives were prevented or stopped early by Curiosity's fault protection software. The primary risks to mobility success have been wheel damage, wheel entrapment, progressive wheel sinkage, and the potential for hardware or cable failures that result in an inability to command one or more steer or drive actuators. In this paper, we describe Curiosity's mobility subsystem, mobility trends over the first 21.3 km of the mission, operational aspects of mobility fault protection, risks to continued mobility success, and risk mitigation strategies.
doi_str_mv 10.1002/rob.22011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2547801228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2547801228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2971-e8ce30759bd9dcd25ff56160b3ad889159d39410ef585514c5fca88d309372063</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFYP_oMFTx7S7kcm2T140OIXVAqi5yXZD01pu3U2VfLvTY148zQzzPPOwEPIOWcTzpiYYqwnQjDOD8iIAxRZrovy8K8HfUxOUloylkulYUSunipM1O6wialpO4rx0yNdx7pZ7ccW_cYl6vr95o22756GBlNLS9r5PnhKjkK1Sv7st47J693ty-whmy_uH2fX88wKXfLMK-slK0HXTjvrBIQABS9YLSunlOagndQ5Zz6AAuC5hWArpZxkWpaCFXJMLoa7W4wfO59as4w73PQvjYC8VIwLoXrqcqAsxpTQB7PFZl1hZzgzezumt2N-7PTsdGC_mpXv_gfN8-JmSHwD_Vtk1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547801228</pqid></control><display><type>article</type><title>Mars curiosity rover mobility trends during the first 7 years</title><source>Access via Wiley Online Library</source><creator>Rankin, Arturo ; Maimone, Mark ; Biesiadecki, Jeffrey ; Patel, Nikunj ; Levine, Dan ; Toupet, Olivier</creator><creatorcontrib>Rankin, Arturo ; Maimone, Mark ; Biesiadecki, Jeffrey ; Patel, Nikunj ; Levine, Dan ; Toupet, Olivier</creatorcontrib><description>NASA's Mars Science Laboratory (MSL) Curiosity rover landed on Mars on August 6, 2012. In the 7 years between landing and August 6, 2019 (sol 2488), Curiosity has driven 21,318.5 m over a variety of terrain types and slopes, employing multiple drive modes with varying amounts of onboard autonomy. Curiosity's drive distances each sol have ranged from its shortest drive of 2.6 cm to its longest drive of 142.5 m, with an average drive distance of 28.9 m. Real‐time human intervention is not possible during Curiosity's drives due to the latency in uplinking commands and downlinking telemetry. Instead, the operations team relies on Curiosity's fault protection, autonomous navigation, and visual odometry software to keep the rover safe during drives. During its first 7 years on Mars, Curiosity has attempted 738 drives. While 622 drives ran to completion, 116 drives were prevented or stopped early by Curiosity's fault protection software. The primary risks to mobility success have been wheel damage, wheel entrapment, progressive wheel sinkage, and the potential for hardware or cable failures that result in an inability to command one or more steer or drive actuators. In this paper, we describe Curiosity's mobility subsystem, mobility trends over the first 21.3 km of the mission, operational aspects of mobility fault protection, risks to continued mobility success, and risk mitigation strategies.</description><identifier>ISSN: 1556-4959</identifier><identifier>EISSN: 1556-4967</identifier><identifier>DOI: 10.1002/rob.22011</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Actuators ; Autonomous navigation ; Autonomy ; Curiosity (Mars rover) ; Entrapment ; Mars rovers ; Network latency ; planetary robotics ; Software ; Subsystems ; Telemetry ; Trends ; wheeled robots</subject><ispartof>Journal of field robotics, 2021-08, Vol.38 (5), p.759-800</ispartof><rights>2021 Wiley Periodicals LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2971-e8ce30759bd9dcd25ff56160b3ad889159d39410ef585514c5fca88d309372063</citedby><cites>FETCH-LOGICAL-c2971-e8ce30759bd9dcd25ff56160b3ad889159d39410ef585514c5fca88d309372063</cites><orcidid>0000-0003-1263-285X ; 0000-0003-4993-7390 ; 0000-0002-6046-6967 ; 0000-0003-4841-9313 ; 0000-0001-6592-6566 ; 0000-0002-7666-9603</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frob.22011$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frob.22011$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Rankin, Arturo</creatorcontrib><creatorcontrib>Maimone, Mark</creatorcontrib><creatorcontrib>Biesiadecki, Jeffrey</creatorcontrib><creatorcontrib>Patel, Nikunj</creatorcontrib><creatorcontrib>Levine, Dan</creatorcontrib><creatorcontrib>Toupet, Olivier</creatorcontrib><title>Mars curiosity rover mobility trends during the first 7 years</title><title>Journal of field robotics</title><description>NASA's Mars Science Laboratory (MSL) Curiosity rover landed on Mars on August 6, 2012. In the 7 years between landing and August 6, 2019 (sol 2488), Curiosity has driven 21,318.5 m over a variety of terrain types and slopes, employing multiple drive modes with varying amounts of onboard autonomy. Curiosity's drive distances each sol have ranged from its shortest drive of 2.6 cm to its longest drive of 142.5 m, with an average drive distance of 28.9 m. Real‐time human intervention is not possible during Curiosity's drives due to the latency in uplinking commands and downlinking telemetry. Instead, the operations team relies on Curiosity's fault protection, autonomous navigation, and visual odometry software to keep the rover safe during drives. During its first 7 years on Mars, Curiosity has attempted 738 drives. While 622 drives ran to completion, 116 drives were prevented or stopped early by Curiosity's fault protection software. The primary risks to mobility success have been wheel damage, wheel entrapment, progressive wheel sinkage, and the potential for hardware or cable failures that result in an inability to command one or more steer or drive actuators. In this paper, we describe Curiosity's mobility subsystem, mobility trends over the first 21.3 km of the mission, operational aspects of mobility fault protection, risks to continued mobility success, and risk mitigation strategies.</description><subject>Actuators</subject><subject>Autonomous navigation</subject><subject>Autonomy</subject><subject>Curiosity (Mars rover)</subject><subject>Entrapment</subject><subject>Mars rovers</subject><subject>Network latency</subject><subject>planetary robotics</subject><subject>Software</subject><subject>Subsystems</subject><subject>Telemetry</subject><subject>Trends</subject><subject>wheeled robots</subject><issn>1556-4959</issn><issn>1556-4967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFYP_oMFTx7S7kcm2T140OIXVAqi5yXZD01pu3U2VfLvTY148zQzzPPOwEPIOWcTzpiYYqwnQjDOD8iIAxRZrovy8K8HfUxOUloylkulYUSunipM1O6wialpO4rx0yNdx7pZ7ccW_cYl6vr95o22756GBlNLS9r5PnhKjkK1Sv7st47J693ty-whmy_uH2fX88wKXfLMK-slK0HXTjvrBIQABS9YLSunlOagndQ5Zz6AAuC5hWArpZxkWpaCFXJMLoa7W4wfO59as4w73PQvjYC8VIwLoXrqcqAsxpTQB7PFZl1hZzgzezumt2N-7PTsdGC_mpXv_gfN8-JmSHwD_Vtk1w</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Rankin, Arturo</creator><creator>Maimone, Mark</creator><creator>Biesiadecki, Jeffrey</creator><creator>Patel, Nikunj</creator><creator>Levine, Dan</creator><creator>Toupet, Olivier</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1263-285X</orcidid><orcidid>https://orcid.org/0000-0003-4993-7390</orcidid><orcidid>https://orcid.org/0000-0002-6046-6967</orcidid><orcidid>https://orcid.org/0000-0003-4841-9313</orcidid><orcidid>https://orcid.org/0000-0001-6592-6566</orcidid><orcidid>https://orcid.org/0000-0002-7666-9603</orcidid></search><sort><creationdate>202108</creationdate><title>Mars curiosity rover mobility trends during the first 7 years</title><author>Rankin, Arturo ; Maimone, Mark ; Biesiadecki, Jeffrey ; Patel, Nikunj ; Levine, Dan ; Toupet, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2971-e8ce30759bd9dcd25ff56160b3ad889159d39410ef585514c5fca88d309372063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuators</topic><topic>Autonomous navigation</topic><topic>Autonomy</topic><topic>Curiosity (Mars rover)</topic><topic>Entrapment</topic><topic>Mars rovers</topic><topic>Network latency</topic><topic>planetary robotics</topic><topic>Software</topic><topic>Subsystems</topic><topic>Telemetry</topic><topic>Trends</topic><topic>wheeled robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rankin, Arturo</creatorcontrib><creatorcontrib>Maimone, Mark</creatorcontrib><creatorcontrib>Biesiadecki, Jeffrey</creatorcontrib><creatorcontrib>Patel, Nikunj</creatorcontrib><creatorcontrib>Levine, Dan</creatorcontrib><creatorcontrib>Toupet, Olivier</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of field robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rankin, Arturo</au><au>Maimone, Mark</au><au>Biesiadecki, Jeffrey</au><au>Patel, Nikunj</au><au>Levine, Dan</au><au>Toupet, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mars curiosity rover mobility trends during the first 7 years</atitle><jtitle>Journal of field robotics</jtitle><date>2021-08</date><risdate>2021</risdate><volume>38</volume><issue>5</issue><spage>759</spage><epage>800</epage><pages>759-800</pages><issn>1556-4959</issn><eissn>1556-4967</eissn><abstract>NASA's Mars Science Laboratory (MSL) Curiosity rover landed on Mars on August 6, 2012. In the 7 years between landing and August 6, 2019 (sol 2488), Curiosity has driven 21,318.5 m over a variety of terrain types and slopes, employing multiple drive modes with varying amounts of onboard autonomy. Curiosity's drive distances each sol have ranged from its shortest drive of 2.6 cm to its longest drive of 142.5 m, with an average drive distance of 28.9 m. Real‐time human intervention is not possible during Curiosity's drives due to the latency in uplinking commands and downlinking telemetry. Instead, the operations team relies on Curiosity's fault protection, autonomous navigation, and visual odometry software to keep the rover safe during drives. During its first 7 years on Mars, Curiosity has attempted 738 drives. While 622 drives ran to completion, 116 drives were prevented or stopped early by Curiosity's fault protection software. The primary risks to mobility success have been wheel damage, wheel entrapment, progressive wheel sinkage, and the potential for hardware or cable failures that result in an inability to command one or more steer or drive actuators. In this paper, we describe Curiosity's mobility subsystem, mobility trends over the first 21.3 km of the mission, operational aspects of mobility fault protection, risks to continued mobility success, and risk mitigation strategies.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rob.22011</doi><tpages>42</tpages><orcidid>https://orcid.org/0000-0003-1263-285X</orcidid><orcidid>https://orcid.org/0000-0003-4993-7390</orcidid><orcidid>https://orcid.org/0000-0002-6046-6967</orcidid><orcidid>https://orcid.org/0000-0003-4841-9313</orcidid><orcidid>https://orcid.org/0000-0001-6592-6566</orcidid><orcidid>https://orcid.org/0000-0002-7666-9603</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1556-4959
ispartof Journal of field robotics, 2021-08, Vol.38 (5), p.759-800
issn 1556-4959
1556-4967
language eng
recordid cdi_proquest_journals_2547801228
source Access via Wiley Online Library
subjects Actuators
Autonomous navigation
Autonomy
Curiosity (Mars rover)
Entrapment
Mars rovers
Network latency
planetary robotics
Software
Subsystems
Telemetry
Trends
wheeled robots
title Mars curiosity rover mobility trends during the first 7 years
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A37%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mars%20curiosity%20rover%20mobility%20trends%20during%20the%20first%207%20years&rft.jtitle=Journal%20of%20field%20robotics&rft.au=Rankin,%20Arturo&rft.date=2021-08&rft.volume=38&rft.issue=5&rft.spage=759&rft.epage=800&rft.pages=759-800&rft.issn=1556-4959&rft.eissn=1556-4967&rft_id=info:doi/10.1002/rob.22011&rft_dat=%3Cproquest_cross%3E2547801228%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2547801228&rft_id=info:pmid/&rfr_iscdi=true