Mars curiosity rover mobility trends during the first 7 years
NASA's Mars Science Laboratory (MSL) Curiosity rover landed on Mars on August 6, 2012. In the 7 years between landing and August 6, 2019 (sol 2488), Curiosity has driven 21,318.5 m over a variety of terrain types and slopes, employing multiple drive modes with varying amounts of onboard autonom...
Gespeichert in:
Veröffentlicht in: | Journal of field robotics 2021-08, Vol.38 (5), p.759-800 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 800 |
---|---|
container_issue | 5 |
container_start_page | 759 |
container_title | Journal of field robotics |
container_volume | 38 |
creator | Rankin, Arturo Maimone, Mark Biesiadecki, Jeffrey Patel, Nikunj Levine, Dan Toupet, Olivier |
description | NASA's Mars Science Laboratory (MSL) Curiosity rover landed on Mars on August 6, 2012. In the 7 years between landing and August 6, 2019 (sol 2488), Curiosity has driven 21,318.5 m over a variety of terrain types and slopes, employing multiple drive modes with varying amounts of onboard autonomy. Curiosity's drive distances each sol have ranged from its shortest drive of 2.6 cm to its longest drive of 142.5 m, with an average drive distance of 28.9 m. Real‐time human intervention is not possible during Curiosity's drives due to the latency in uplinking commands and downlinking telemetry. Instead, the operations team relies on Curiosity's fault protection, autonomous navigation, and visual odometry software to keep the rover safe during drives. During its first 7 years on Mars, Curiosity has attempted 738 drives. While 622 drives ran to completion, 116 drives were prevented or stopped early by Curiosity's fault protection software. The primary risks to mobility success have been wheel damage, wheel entrapment, progressive wheel sinkage, and the potential for hardware or cable failures that result in an inability to command one or more steer or drive actuators. In this paper, we describe Curiosity's mobility subsystem, mobility trends over the first 21.3 km of the mission, operational aspects of mobility fault protection, risks to continued mobility success, and risk mitigation strategies. |
doi_str_mv | 10.1002/rob.22011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2547801228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2547801228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2971-e8ce30759bd9dcd25ff56160b3ad889159d39410ef585514c5fca88d309372063</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFYP_oMFTx7S7kcm2T140OIXVAqi5yXZD01pu3U2VfLvTY148zQzzPPOwEPIOWcTzpiYYqwnQjDOD8iIAxRZrovy8K8HfUxOUloylkulYUSunipM1O6wialpO4rx0yNdx7pZ7ccW_cYl6vr95o22756GBlNLS9r5PnhKjkK1Sv7st47J693ty-whmy_uH2fX88wKXfLMK-slK0HXTjvrBIQABS9YLSunlOagndQ5Zz6AAuC5hWArpZxkWpaCFXJMLoa7W4wfO59as4w73PQvjYC8VIwLoXrqcqAsxpTQB7PFZl1hZzgzezumt2N-7PTsdGC_mpXv_gfN8-JmSHwD_Vtk1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547801228</pqid></control><display><type>article</type><title>Mars curiosity rover mobility trends during the first 7 years</title><source>Access via Wiley Online Library</source><creator>Rankin, Arturo ; Maimone, Mark ; Biesiadecki, Jeffrey ; Patel, Nikunj ; Levine, Dan ; Toupet, Olivier</creator><creatorcontrib>Rankin, Arturo ; Maimone, Mark ; Biesiadecki, Jeffrey ; Patel, Nikunj ; Levine, Dan ; Toupet, Olivier</creatorcontrib><description>NASA's Mars Science Laboratory (MSL) Curiosity rover landed on Mars on August 6, 2012. In the 7 years between landing and August 6, 2019 (sol 2488), Curiosity has driven 21,318.5 m over a variety of terrain types and slopes, employing multiple drive modes with varying amounts of onboard autonomy. Curiosity's drive distances each sol have ranged from its shortest drive of 2.6 cm to its longest drive of 142.5 m, with an average drive distance of 28.9 m. Real‐time human intervention is not possible during Curiosity's drives due to the latency in uplinking commands and downlinking telemetry. Instead, the operations team relies on Curiosity's fault protection, autonomous navigation, and visual odometry software to keep the rover safe during drives. During its first 7 years on Mars, Curiosity has attempted 738 drives. While 622 drives ran to completion, 116 drives were prevented or stopped early by Curiosity's fault protection software. The primary risks to mobility success have been wheel damage, wheel entrapment, progressive wheel sinkage, and the potential for hardware or cable failures that result in an inability to command one or more steer or drive actuators. In this paper, we describe Curiosity's mobility subsystem, mobility trends over the first 21.3 km of the mission, operational aspects of mobility fault protection, risks to continued mobility success, and risk mitigation strategies.</description><identifier>ISSN: 1556-4959</identifier><identifier>EISSN: 1556-4967</identifier><identifier>DOI: 10.1002/rob.22011</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Actuators ; Autonomous navigation ; Autonomy ; Curiosity (Mars rover) ; Entrapment ; Mars rovers ; Network latency ; planetary robotics ; Software ; Subsystems ; Telemetry ; Trends ; wheeled robots</subject><ispartof>Journal of field robotics, 2021-08, Vol.38 (5), p.759-800</ispartof><rights>2021 Wiley Periodicals LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2971-e8ce30759bd9dcd25ff56160b3ad889159d39410ef585514c5fca88d309372063</citedby><cites>FETCH-LOGICAL-c2971-e8ce30759bd9dcd25ff56160b3ad889159d39410ef585514c5fca88d309372063</cites><orcidid>0000-0003-1263-285X ; 0000-0003-4993-7390 ; 0000-0002-6046-6967 ; 0000-0003-4841-9313 ; 0000-0001-6592-6566 ; 0000-0002-7666-9603</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frob.22011$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frob.22011$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Rankin, Arturo</creatorcontrib><creatorcontrib>Maimone, Mark</creatorcontrib><creatorcontrib>Biesiadecki, Jeffrey</creatorcontrib><creatorcontrib>Patel, Nikunj</creatorcontrib><creatorcontrib>Levine, Dan</creatorcontrib><creatorcontrib>Toupet, Olivier</creatorcontrib><title>Mars curiosity rover mobility trends during the first 7 years</title><title>Journal of field robotics</title><description>NASA's Mars Science Laboratory (MSL) Curiosity rover landed on Mars on August 6, 2012. In the 7 years between landing and August 6, 2019 (sol 2488), Curiosity has driven 21,318.5 m over a variety of terrain types and slopes, employing multiple drive modes with varying amounts of onboard autonomy. Curiosity's drive distances each sol have ranged from its shortest drive of 2.6 cm to its longest drive of 142.5 m, with an average drive distance of 28.9 m. Real‐time human intervention is not possible during Curiosity's drives due to the latency in uplinking commands and downlinking telemetry. Instead, the operations team relies on Curiosity's fault protection, autonomous navigation, and visual odometry software to keep the rover safe during drives. During its first 7 years on Mars, Curiosity has attempted 738 drives. While 622 drives ran to completion, 116 drives were prevented or stopped early by Curiosity's fault protection software. The primary risks to mobility success have been wheel damage, wheel entrapment, progressive wheel sinkage, and the potential for hardware or cable failures that result in an inability to command one or more steer or drive actuators. In this paper, we describe Curiosity's mobility subsystem, mobility trends over the first 21.3 km of the mission, operational aspects of mobility fault protection, risks to continued mobility success, and risk mitigation strategies.</description><subject>Actuators</subject><subject>Autonomous navigation</subject><subject>Autonomy</subject><subject>Curiosity (Mars rover)</subject><subject>Entrapment</subject><subject>Mars rovers</subject><subject>Network latency</subject><subject>planetary robotics</subject><subject>Software</subject><subject>Subsystems</subject><subject>Telemetry</subject><subject>Trends</subject><subject>wheeled robots</subject><issn>1556-4959</issn><issn>1556-4967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFYP_oMFTx7S7kcm2T140OIXVAqi5yXZD01pu3U2VfLvTY148zQzzPPOwEPIOWcTzpiYYqwnQjDOD8iIAxRZrovy8K8HfUxOUloylkulYUSunipM1O6wialpO4rx0yNdx7pZ7ccW_cYl6vr95o22756GBlNLS9r5PnhKjkK1Sv7st47J693ty-whmy_uH2fX88wKXfLMK-slK0HXTjvrBIQABS9YLSunlOagndQ5Zz6AAuC5hWArpZxkWpaCFXJMLoa7W4wfO59as4w73PQvjYC8VIwLoXrqcqAsxpTQB7PFZl1hZzgzezumt2N-7PTsdGC_mpXv_gfN8-JmSHwD_Vtk1w</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Rankin, Arturo</creator><creator>Maimone, Mark</creator><creator>Biesiadecki, Jeffrey</creator><creator>Patel, Nikunj</creator><creator>Levine, Dan</creator><creator>Toupet, Olivier</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1263-285X</orcidid><orcidid>https://orcid.org/0000-0003-4993-7390</orcidid><orcidid>https://orcid.org/0000-0002-6046-6967</orcidid><orcidid>https://orcid.org/0000-0003-4841-9313</orcidid><orcidid>https://orcid.org/0000-0001-6592-6566</orcidid><orcidid>https://orcid.org/0000-0002-7666-9603</orcidid></search><sort><creationdate>202108</creationdate><title>Mars curiosity rover mobility trends during the first 7 years</title><author>Rankin, Arturo ; Maimone, Mark ; Biesiadecki, Jeffrey ; Patel, Nikunj ; Levine, Dan ; Toupet, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2971-e8ce30759bd9dcd25ff56160b3ad889159d39410ef585514c5fca88d309372063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuators</topic><topic>Autonomous navigation</topic><topic>Autonomy</topic><topic>Curiosity (Mars rover)</topic><topic>Entrapment</topic><topic>Mars rovers</topic><topic>Network latency</topic><topic>planetary robotics</topic><topic>Software</topic><topic>Subsystems</topic><topic>Telemetry</topic><topic>Trends</topic><topic>wheeled robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rankin, Arturo</creatorcontrib><creatorcontrib>Maimone, Mark</creatorcontrib><creatorcontrib>Biesiadecki, Jeffrey</creatorcontrib><creatorcontrib>Patel, Nikunj</creatorcontrib><creatorcontrib>Levine, Dan</creatorcontrib><creatorcontrib>Toupet, Olivier</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of field robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rankin, Arturo</au><au>Maimone, Mark</au><au>Biesiadecki, Jeffrey</au><au>Patel, Nikunj</au><au>Levine, Dan</au><au>Toupet, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mars curiosity rover mobility trends during the first 7 years</atitle><jtitle>Journal of field robotics</jtitle><date>2021-08</date><risdate>2021</risdate><volume>38</volume><issue>5</issue><spage>759</spage><epage>800</epage><pages>759-800</pages><issn>1556-4959</issn><eissn>1556-4967</eissn><abstract>NASA's Mars Science Laboratory (MSL) Curiosity rover landed on Mars on August 6, 2012. In the 7 years between landing and August 6, 2019 (sol 2488), Curiosity has driven 21,318.5 m over a variety of terrain types and slopes, employing multiple drive modes with varying amounts of onboard autonomy. Curiosity's drive distances each sol have ranged from its shortest drive of 2.6 cm to its longest drive of 142.5 m, with an average drive distance of 28.9 m. Real‐time human intervention is not possible during Curiosity's drives due to the latency in uplinking commands and downlinking telemetry. Instead, the operations team relies on Curiosity's fault protection, autonomous navigation, and visual odometry software to keep the rover safe during drives. During its first 7 years on Mars, Curiosity has attempted 738 drives. While 622 drives ran to completion, 116 drives were prevented or stopped early by Curiosity's fault protection software. The primary risks to mobility success have been wheel damage, wheel entrapment, progressive wheel sinkage, and the potential for hardware or cable failures that result in an inability to command one or more steer or drive actuators. In this paper, we describe Curiosity's mobility subsystem, mobility trends over the first 21.3 km of the mission, operational aspects of mobility fault protection, risks to continued mobility success, and risk mitigation strategies.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rob.22011</doi><tpages>42</tpages><orcidid>https://orcid.org/0000-0003-1263-285X</orcidid><orcidid>https://orcid.org/0000-0003-4993-7390</orcidid><orcidid>https://orcid.org/0000-0002-6046-6967</orcidid><orcidid>https://orcid.org/0000-0003-4841-9313</orcidid><orcidid>https://orcid.org/0000-0001-6592-6566</orcidid><orcidid>https://orcid.org/0000-0002-7666-9603</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1556-4959 |
ispartof | Journal of field robotics, 2021-08, Vol.38 (5), p.759-800 |
issn | 1556-4959 1556-4967 |
language | eng |
recordid | cdi_proquest_journals_2547801228 |
source | Access via Wiley Online Library |
subjects | Actuators Autonomous navigation Autonomy Curiosity (Mars rover) Entrapment Mars rovers Network latency planetary robotics Software Subsystems Telemetry Trends wheeled robots |
title | Mars curiosity rover mobility trends during the first 7 years |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A37%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mars%20curiosity%20rover%20mobility%20trends%20during%20the%20first%207%20years&rft.jtitle=Journal%20of%20field%20robotics&rft.au=Rankin,%20Arturo&rft.date=2021-08&rft.volume=38&rft.issue=5&rft.spage=759&rft.epage=800&rft.pages=759-800&rft.issn=1556-4959&rft.eissn=1556-4967&rft_id=info:doi/10.1002/rob.22011&rft_dat=%3Cproquest_cross%3E2547801228%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2547801228&rft_id=info:pmid/&rfr_iscdi=true |