Approximate analytical solution of non-linear reaction-diffusion equations in a cubic-autocatalytic reaction with Michaelis–Menten decay

The mathematical model pertaining to the cubic-autocatalytic reaction with M-M decay considered in one- dimensional reaction-diffusion cell is discussed. Approximate analytical solutions have been derived for the concentrations of the reactant and autocatalyst in the steady state and the non-steady...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ananthaswamy, V., Narmatha, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2378
creator Ananthaswamy, V.
Narmatha, S.
description The mathematical model pertaining to the cubic-autocatalytic reaction with M-M decay considered in one- dimensional reaction-diffusion cell is discussed. Approximate analytical solutions have been derived for the concentrations of the reactant and autocatalyst in the steady state and the non-steady state using the Homotopy analysis method. When the decay is linear, the model becomes the standard Gray-Scott model, and the corresponding approximate analytical solutions are also derived. The derived analytical expressions are compared with the numerical results with the help of MATLAB and are found to make a very good fit for small values of parameters.
doi_str_mv 10.1063/5.0058275
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2547671624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2547671624</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-982c54f501992f9790f8c247dbe504dc15cb14fb0f79bc98c83c875f547181d43</originalsourceid><addsrcrecordid>eNo9kE9LwzAYxoMoOKcHv0HAm5CZpEmTHMfwH2x4UfBW0jRhGTXtmhTdzbNXv6GfxNYNTy88_N4Hfg8AlwTPCM6zGz7DmEsq-BGYEM4JEjnJj8EEY8UQZdnrKTiLcYMxVULICfiat23XfPg3nSzUQde75I2uYWzqPvkmwMbB0ARU-2B1BzurzRijyjvXxxGw216PUYQ-QA1NX3qDdJ8ao9O-7v8Lvvu0hitv1trWPv58fq9sSDbAyhq9OwcnTtfRXhzuFLzc3T4vHtDy6f5xMV-ilmRZQkpSw5njmChFnRIKO2koE1VpOWaVIdyUhLkSO6FKo6SRmZGCO84EkaRi2RRc7XsH8W1vYyo2Td8N6rGgA5QLktORut5T0fj0J1i03TBTtysILsatC14cts5-Ac3UdKo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2547671624</pqid></control><display><type>conference_proceeding</type><title>Approximate analytical solution of non-linear reaction-diffusion equations in a cubic-autocatalytic reaction with Michaelis–Menten decay</title><source>American Institute of Physics</source><creator>Ananthaswamy, V. ; Narmatha, S.</creator><contributor>Vijayan, V. ; Dinesh, S. ; Srinivasan, R. ; Parthiban, A.</contributor><creatorcontrib>Ananthaswamy, V. ; Narmatha, S. ; Vijayan, V. ; Dinesh, S. ; Srinivasan, R. ; Parthiban, A.</creatorcontrib><description>The mathematical model pertaining to the cubic-autocatalytic reaction with M-M decay considered in one- dimensional reaction-diffusion cell is discussed. Approximate analytical solutions have been derived for the concentrations of the reactant and autocatalyst in the steady state and the non-steady state using the Homotopy analysis method. When the decay is linear, the model becomes the standard Gray-Scott model, and the corresponding approximate analytical solutions are also derived. The derived analytical expressions are compared with the numerical results with the help of MATLAB and are found to make a very good fit for small values of parameters.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0058275</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Decay ; Diffusion cells ; Exact solutions ; Mathematical models ; Reaction-diffusion equations ; Steady state</subject><ispartof>AIP conference proceedings, 2021, Vol.2378 (1)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0058275$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,795,4513,23932,23933,25142,27926,27927,76386</link.rule.ids></links><search><contributor>Vijayan, V.</contributor><contributor>Dinesh, S.</contributor><contributor>Srinivasan, R.</contributor><contributor>Parthiban, A.</contributor><creatorcontrib>Ananthaswamy, V.</creatorcontrib><creatorcontrib>Narmatha, S.</creatorcontrib><title>Approximate analytical solution of non-linear reaction-diffusion equations in a cubic-autocatalytic reaction with Michaelis–Menten decay</title><title>AIP conference proceedings</title><description>The mathematical model pertaining to the cubic-autocatalytic reaction with M-M decay considered in one- dimensional reaction-diffusion cell is discussed. Approximate analytical solutions have been derived for the concentrations of the reactant and autocatalyst in the steady state and the non-steady state using the Homotopy analysis method. When the decay is linear, the model becomes the standard Gray-Scott model, and the corresponding approximate analytical solutions are also derived. The derived analytical expressions are compared with the numerical results with the help of MATLAB and are found to make a very good fit for small values of parameters.</description><subject>Decay</subject><subject>Diffusion cells</subject><subject>Exact solutions</subject><subject>Mathematical models</subject><subject>Reaction-diffusion equations</subject><subject>Steady state</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNo9kE9LwzAYxoMoOKcHv0HAm5CZpEmTHMfwH2x4UfBW0jRhGTXtmhTdzbNXv6GfxNYNTy88_N4Hfg8AlwTPCM6zGz7DmEsq-BGYEM4JEjnJj8EEY8UQZdnrKTiLcYMxVULICfiat23XfPg3nSzUQde75I2uYWzqPvkmwMbB0ARU-2B1BzurzRijyjvXxxGw216PUYQ-QA1NX3qDdJ8ao9O-7v8Lvvu0hitv1trWPv58fq9sSDbAyhq9OwcnTtfRXhzuFLzc3T4vHtDy6f5xMV-ilmRZQkpSw5njmChFnRIKO2koE1VpOWaVIdyUhLkSO6FKo6SRmZGCO84EkaRi2RRc7XsH8W1vYyo2Td8N6rGgA5QLktORut5T0fj0J1i03TBTtysILsatC14cts5-Ac3UdKo</recordid><startdate>20210702</startdate><enddate>20210702</enddate><creator>Ananthaswamy, V.</creator><creator>Narmatha, S.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20210702</creationdate><title>Approximate analytical solution of non-linear reaction-diffusion equations in a cubic-autocatalytic reaction with Michaelis–Menten decay</title><author>Ananthaswamy, V. ; Narmatha, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-982c54f501992f9790f8c247dbe504dc15cb14fb0f79bc98c83c875f547181d43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Decay</topic><topic>Diffusion cells</topic><topic>Exact solutions</topic><topic>Mathematical models</topic><topic>Reaction-diffusion equations</topic><topic>Steady state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ananthaswamy, V.</creatorcontrib><creatorcontrib>Narmatha, S.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ananthaswamy, V.</au><au>Narmatha, S.</au><au>Vijayan, V.</au><au>Dinesh, S.</au><au>Srinivasan, R.</au><au>Parthiban, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Approximate analytical solution of non-linear reaction-diffusion equations in a cubic-autocatalytic reaction with Michaelis–Menten decay</atitle><btitle>AIP conference proceedings</btitle><date>2021-07-02</date><risdate>2021</risdate><volume>2378</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The mathematical model pertaining to the cubic-autocatalytic reaction with M-M decay considered in one- dimensional reaction-diffusion cell is discussed. Approximate analytical solutions have been derived for the concentrations of the reactant and autocatalyst in the steady state and the non-steady state using the Homotopy analysis method. When the decay is linear, the model becomes the standard Gray-Scott model, and the corresponding approximate analytical solutions are also derived. The derived analytical expressions are compared with the numerical results with the help of MATLAB and are found to make a very good fit for small values of parameters.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0058275</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2021, Vol.2378 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2547671624
source American Institute of Physics
subjects Decay
Diffusion cells
Exact solutions
Mathematical models
Reaction-diffusion equations
Steady state
title Approximate analytical solution of non-linear reaction-diffusion equations in a cubic-autocatalytic reaction with Michaelis–Menten decay
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T17%3A50%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Approximate%20analytical%20solution%20of%20non-linear%20reaction-diffusion%20equations%20in%20a%20cubic-autocatalytic%20reaction%20with%20Michaelis%E2%80%93Menten%20decay&rft.btitle=AIP%20conference%20proceedings&rft.au=Ananthaswamy,%20V.&rft.date=2021-07-02&rft.volume=2378&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0058275&rft_dat=%3Cproquest_scita%3E2547671624%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2547671624&rft_id=info:pmid/&rfr_iscdi=true