FuseSeg: Semantic Segmentation of Urban Scenes Based on RGB and Thermal Data Fusion

Semantic segmentation of urban scenes is an essential component in various applications of autonomous driving. It makes great progress with the rise of deep learning technologies. Most of the current semantic segmentation networks use single-modal sensory data, which are usually the RGB images produ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automation science and engineering 2021-07, Vol.18 (3), p.1000-1011
Hauptverfasser: Sun, Yuxiang, Zuo, Weixun, Yun, Peng, Wang, Hengli, Liu, Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1011
container_issue 3
container_start_page 1000
container_title IEEE transactions on automation science and engineering
container_volume 18
creator Sun, Yuxiang
Zuo, Weixun
Yun, Peng
Wang, Hengli
Liu, Ming
description Semantic segmentation of urban scenes is an essential component in various applications of autonomous driving. It makes great progress with the rise of deep learning technologies. Most of the current semantic segmentation networks use single-modal sensory data, which are usually the RGB images produced by visible cameras. However, the segmentation performance of these networks is prone to be degraded when lighting conditions are not satisfied, such as dim light or darkness. We find that thermal images produced by thermal imaging cameras are robust to challenging lighting conditions. Therefore, in this article, we propose a novel RGB and thermal data fusion network named FuseSeg to achieve superior performance of semantic segmentation in urban scenes. The experimental results demonstrate that our network outperforms the state-of-the-art networks. Note to Practitioners -This article investigates the problem of semantic segmentation of urban scenes when lighting conditions are not satisfied. We provide a solution to this problem via information fusion with RGB and thermal data. We build an end-to-end deep neural network, which takes as input a pair of RGB and thermal images and outputs pixel-wise semantic labels. Our network could be used for urban scene understanding, which serves as a fundamental component of many autonomous driving tasks, such as environment modeling, obstacle avoidance, motion prediction, and planning. Moreover, the simple design of our network allows it to be easily implemented using various deep learning frameworks, which facilitates the applications on different hardware or software platforms.
doi_str_mv 10.1109/TASE.2020.2993143
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2547646624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9108585</ieee_id><sourcerecordid>2547646624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-c050b4b6983559b895b2f4872779d4a8c5c3146722797e178277ab4a36ab2dbc3</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKcfQHwJ-NyZv03i2za3KQwEuz2HJE1nx9rOpHvw25uy4dM9cM85l_sD4BGjCcZIvWymxWJCEEETohTFjF6BEeZcZlRIej1oxjOuOL8FdzHuESJMKjQCxfIUfeF3r7DwjWn72iWxa3zbm77uWthVcBusaWHhfOsjnJnoS5gWX6sZNG0JN98-NOYA30xvYCpLoXtwU5lD9A-XOQbb5WIzf8_Wn6uP-XSdOcpVnznEkWU2V5JyrqxU3JKKSUGEUCUz0nGXHskFIUIJj4VMC2OZobmxpLSOjsHzufcYup-Tj73ed6fQppOacCZylueEJRc-u1zoYgy-0sdQNyb8aoz0wE4P7PTATl_YpczTOVN77__9CiPJJad_ZHZoCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547646624</pqid></control><display><type>article</type><title>FuseSeg: Semantic Segmentation of Urban Scenes Based on RGB and Thermal Data Fusion</title><source>IEEE Electronic Library (IEL)</source><creator>Sun, Yuxiang ; Zuo, Weixun ; Yun, Peng ; Wang, Hengli ; Liu, Ming</creator><creatorcontrib>Sun, Yuxiang ; Zuo, Weixun ; Yun, Peng ; Wang, Hengli ; Liu, Ming</creatorcontrib><description>Semantic segmentation of urban scenes is an essential component in various applications of autonomous driving. It makes great progress with the rise of deep learning technologies. Most of the current semantic segmentation networks use single-modal sensory data, which are usually the RGB images produced by visible cameras. However, the segmentation performance of these networks is prone to be degraded when lighting conditions are not satisfied, such as dim light or darkness. We find that thermal images produced by thermal imaging cameras are robust to challenging lighting conditions. Therefore, in this article, we propose a novel RGB and thermal data fusion network named FuseSeg to achieve superior performance of semantic segmentation in urban scenes. The experimental results demonstrate that our network outperforms the state-of-the-art networks. Note to Practitioners -This article investigates the problem of semantic segmentation of urban scenes when lighting conditions are not satisfied. We provide a solution to this problem via information fusion with RGB and thermal data. We build an end-to-end deep neural network, which takes as input a pair of RGB and thermal images and outputs pixel-wise semantic labels. Our network could be used for urban scene understanding, which serves as a fundamental component of many autonomous driving tasks, such as environment modeling, obstacle avoidance, motion prediction, and planning. Moreover, the simple design of our network allows it to be easily implemented using various deep learning frameworks, which facilitates the applications on different hardware or software platforms.</description><identifier>ISSN: 1545-5955</identifier><identifier>EISSN: 1558-3783</identifier><identifier>DOI: 10.1109/TASE.2020.2993143</identifier><identifier>CODEN: ITASC7</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Autonomous driving ; Autonomous vehicles ; Cameras ; Color imagery ; Darkness ; Data integration ; Deep learning ; Environment models ; Heat detection ; Image segmentation ; information fusion ; Lighting ; Machine learning ; Obstacle avoidance ; Scene analysis ; Semantic segmentation ; Semantics ; thermal images ; Thermal imaging ; Urban areas ; urban scenes</subject><ispartof>IEEE transactions on automation science and engineering, 2021-07, Vol.18 (3), p.1000-1011</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-c050b4b6983559b895b2f4872779d4a8c5c3146722797e178277ab4a36ab2dbc3</citedby><cites>FETCH-LOGICAL-c359t-c050b4b6983559b895b2f4872779d4a8c5c3146722797e178277ab4a36ab2dbc3</cites><orcidid>0000-0002-4500-238X ; 0000-0002-8163-267X ; 0000-0002-7704-0559 ; 0000-0001-7251-0841 ; 0000-0002-7515-9759</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9108585$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9108585$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sun, Yuxiang</creatorcontrib><creatorcontrib>Zuo, Weixun</creatorcontrib><creatorcontrib>Yun, Peng</creatorcontrib><creatorcontrib>Wang, Hengli</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><title>FuseSeg: Semantic Segmentation of Urban Scenes Based on RGB and Thermal Data Fusion</title><title>IEEE transactions on automation science and engineering</title><addtitle>TASE</addtitle><description>Semantic segmentation of urban scenes is an essential component in various applications of autonomous driving. It makes great progress with the rise of deep learning technologies. Most of the current semantic segmentation networks use single-modal sensory data, which are usually the RGB images produced by visible cameras. However, the segmentation performance of these networks is prone to be degraded when lighting conditions are not satisfied, such as dim light or darkness. We find that thermal images produced by thermal imaging cameras are robust to challenging lighting conditions. Therefore, in this article, we propose a novel RGB and thermal data fusion network named FuseSeg to achieve superior performance of semantic segmentation in urban scenes. The experimental results demonstrate that our network outperforms the state-of-the-art networks. Note to Practitioners -This article investigates the problem of semantic segmentation of urban scenes when lighting conditions are not satisfied. We provide a solution to this problem via information fusion with RGB and thermal data. We build an end-to-end deep neural network, which takes as input a pair of RGB and thermal images and outputs pixel-wise semantic labels. Our network could be used for urban scene understanding, which serves as a fundamental component of many autonomous driving tasks, such as environment modeling, obstacle avoidance, motion prediction, and planning. Moreover, the simple design of our network allows it to be easily implemented using various deep learning frameworks, which facilitates the applications on different hardware or software platforms.</description><subject>Artificial neural networks</subject><subject>Autonomous driving</subject><subject>Autonomous vehicles</subject><subject>Cameras</subject><subject>Color imagery</subject><subject>Darkness</subject><subject>Data integration</subject><subject>Deep learning</subject><subject>Environment models</subject><subject>Heat detection</subject><subject>Image segmentation</subject><subject>information fusion</subject><subject>Lighting</subject><subject>Machine learning</subject><subject>Obstacle avoidance</subject><subject>Scene analysis</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>thermal images</subject><subject>Thermal imaging</subject><subject>Urban areas</subject><subject>urban scenes</subject><issn>1545-5955</issn><issn>1558-3783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxYMoOKcfQHwJ-NyZv03i2za3KQwEuz2HJE1nx9rOpHvw25uy4dM9cM85l_sD4BGjCcZIvWymxWJCEEETohTFjF6BEeZcZlRIej1oxjOuOL8FdzHuESJMKjQCxfIUfeF3r7DwjWn72iWxa3zbm77uWthVcBusaWHhfOsjnJnoS5gWX6sZNG0JN98-NOYA30xvYCpLoXtwU5lD9A-XOQbb5WIzf8_Wn6uP-XSdOcpVnznEkWU2V5JyrqxU3JKKSUGEUCUz0nGXHskFIUIJj4VMC2OZobmxpLSOjsHzufcYup-Tj73ed6fQppOacCZylueEJRc-u1zoYgy-0sdQNyb8aoz0wE4P7PTATl_YpczTOVN77__9CiPJJad_ZHZoCw</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Sun, Yuxiang</creator><creator>Zuo, Weixun</creator><creator>Yun, Peng</creator><creator>Wang, Hengli</creator><creator>Liu, Ming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4500-238X</orcidid><orcidid>https://orcid.org/0000-0002-8163-267X</orcidid><orcidid>https://orcid.org/0000-0002-7704-0559</orcidid><orcidid>https://orcid.org/0000-0001-7251-0841</orcidid><orcidid>https://orcid.org/0000-0002-7515-9759</orcidid></search><sort><creationdate>20210701</creationdate><title>FuseSeg: Semantic Segmentation of Urban Scenes Based on RGB and Thermal Data Fusion</title><author>Sun, Yuxiang ; Zuo, Weixun ; Yun, Peng ; Wang, Hengli ; Liu, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-c050b4b6983559b895b2f4872779d4a8c5c3146722797e178277ab4a36ab2dbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Autonomous driving</topic><topic>Autonomous vehicles</topic><topic>Cameras</topic><topic>Color imagery</topic><topic>Darkness</topic><topic>Data integration</topic><topic>Deep learning</topic><topic>Environment models</topic><topic>Heat detection</topic><topic>Image segmentation</topic><topic>information fusion</topic><topic>Lighting</topic><topic>Machine learning</topic><topic>Obstacle avoidance</topic><topic>Scene analysis</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>thermal images</topic><topic>Thermal imaging</topic><topic>Urban areas</topic><topic>urban scenes</topic><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yuxiang</creatorcontrib><creatorcontrib>Zuo, Weixun</creatorcontrib><creatorcontrib>Yun, Peng</creatorcontrib><creatorcontrib>Wang, Hengli</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automation science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, Yuxiang</au><au>Zuo, Weixun</au><au>Yun, Peng</au><au>Wang, Hengli</au><au>Liu, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FuseSeg: Semantic Segmentation of Urban Scenes Based on RGB and Thermal Data Fusion</atitle><jtitle>IEEE transactions on automation science and engineering</jtitle><stitle>TASE</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>18</volume><issue>3</issue><spage>1000</spage><epage>1011</epage><pages>1000-1011</pages><issn>1545-5955</issn><eissn>1558-3783</eissn><coden>ITASC7</coden><abstract>Semantic segmentation of urban scenes is an essential component in various applications of autonomous driving. It makes great progress with the rise of deep learning technologies. Most of the current semantic segmentation networks use single-modal sensory data, which are usually the RGB images produced by visible cameras. However, the segmentation performance of these networks is prone to be degraded when lighting conditions are not satisfied, such as dim light or darkness. We find that thermal images produced by thermal imaging cameras are robust to challenging lighting conditions. Therefore, in this article, we propose a novel RGB and thermal data fusion network named FuseSeg to achieve superior performance of semantic segmentation in urban scenes. The experimental results demonstrate that our network outperforms the state-of-the-art networks. Note to Practitioners -This article investigates the problem of semantic segmentation of urban scenes when lighting conditions are not satisfied. We provide a solution to this problem via information fusion with RGB and thermal data. We build an end-to-end deep neural network, which takes as input a pair of RGB and thermal images and outputs pixel-wise semantic labels. Our network could be used for urban scene understanding, which serves as a fundamental component of many autonomous driving tasks, such as environment modeling, obstacle avoidance, motion prediction, and planning. Moreover, the simple design of our network allows it to be easily implemented using various deep learning frameworks, which facilitates the applications on different hardware or software platforms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASE.2020.2993143</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4500-238X</orcidid><orcidid>https://orcid.org/0000-0002-8163-267X</orcidid><orcidid>https://orcid.org/0000-0002-7704-0559</orcidid><orcidid>https://orcid.org/0000-0001-7251-0841</orcidid><orcidid>https://orcid.org/0000-0002-7515-9759</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-5955
ispartof IEEE transactions on automation science and engineering, 2021-07, Vol.18 (3), p.1000-1011
issn 1545-5955
1558-3783
language eng
recordid cdi_proquest_journals_2547646624
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Autonomous driving
Autonomous vehicles
Cameras
Color imagery
Darkness
Data integration
Deep learning
Environment models
Heat detection
Image segmentation
information fusion
Lighting
Machine learning
Obstacle avoidance
Scene analysis
Semantic segmentation
Semantics
thermal images
Thermal imaging
Urban areas
urban scenes
title FuseSeg: Semantic Segmentation of Urban Scenes Based on RGB and Thermal Data Fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A21%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FuseSeg:%20Semantic%20Segmentation%20of%20Urban%20Scenes%20Based%20on%20RGB%20and%20Thermal%20Data%20Fusion&rft.jtitle=IEEE%20transactions%20on%20automation%20science%20and%20engineering&rft.au=Sun,%20Yuxiang&rft.date=2021-07-01&rft.volume=18&rft.issue=3&rft.spage=1000&rft.epage=1011&rft.pages=1000-1011&rft.issn=1545-5955&rft.eissn=1558-3783&rft.coden=ITASC7&rft_id=info:doi/10.1109/TASE.2020.2993143&rft_dat=%3Cproquest_RIE%3E2547646624%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2547646624&rft_id=info:pmid/&rft_ieee_id=9108585&rfr_iscdi=true