Unsupervised Horizontal Pyramid Similarity Learning for Cross-domain Adaptive Person Re-identification
Although person re-identification has made great progress, unsupervised cross-domain adaptive person re-identification is still a challenging problem. With no labeled data in target domain, the performance may have a significant drop. In this paper, we propose an unsupervised cross-domain adaptive p...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021-01, Vol.9, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 9 |
creator | Dong, Wenhui Qu, Peishu Liu, Chunsheng Tang, Yanke Gai, Ning |
description | Although person re-identification has made great progress, unsupervised cross-domain adaptive person re-identification is still a challenging problem. With no labeled data in target domain, the performance may have a significant drop. In this paper, we propose an unsupervised cross-domain adaptive person re-identification framework based on horizontal pyramid similarity learning (UHPS). Firstly, horizontal pyramid features are extracted by dividing the deep feature maps into different number of partial feature bins. These feature bins with diverse scales can incorporate not only the global information but also local information in different spatial scales, making the framework more robust in complex environment. Then, horizontal pyramid similarity learning is proposed with the mechanism of fusing together the internal similarity of the target domain and the similarity between the source domain and target domain. Finally, the unsupervised clustering algorithm DBSCAN embeded with the horizontal pyramid similarity is employed to select training data in the target domain and estimate the pseudo labels in each training iteration, for the purpose of adapting the framework to the target domain. The results on Market1501 and DukeMTMC-reID confirm that the proposed framework can adapt to the target domain effectively and outperforms the state-of-the-art unsupervised cross domain person re-identification approaches. |
doi_str_mv | 10.1109/ACCESS.2021.3093083 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2547642363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9466837</ieee_id><doaj_id>oai_doaj_org_article_00f1a4c570ab4d42843fc762b6bbb1ba</doaj_id><sourcerecordid>2547642363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-12e45b71497513e93e899e60f2025ff50d228889ca58336cbff57d9113a47eeb3</originalsourceid><addsrcrecordid>eNpNUdtqGzEQXUoLDWm-IC-CPq-r--XRLGkTMDTUzbOQVqMgY0uutA64X991NoTOywyHOWcup-tuCV4Rgs239TDcbbcriilZMWwY1uxDd0WJND0TTH78r_7c3bS2w3PoGRLqqotPuZ2OUF9Sg4DuS01_S57cHj2eqzukgLbpkPaupumMNuBqTvkZxVLRUEtrfSgHlzJaB3ec0gugR6itZPQL-hQgTymm0U2p5C_dp-j2DW7e8nX39P3u93Dfb37-eBjWm37kWE89ocCFV4QbJQgDw0AbAxLH-TgRo8CBUq21GZ3QjMnRz5gKhhDmuALw7Lp7WHRDcTt7rOng6tkWl-wrUOqzdXVK4x4sxpE4PgqFneeBU81ZHJWkXnrviXez1tdF61jLnxO0ye7KqeZ5fUsFV5JTJtncxZau8fKQCvF9KsH24o9d_LEXf-ybPzPrdmElAHhnGC6lZor9A8PUjHw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547642363</pqid></control><display><type>article</type><title>Unsupervised Horizontal Pyramid Similarity Learning for Cross-domain Adaptive Person Re-identification</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dong, Wenhui ; Qu, Peishu ; Liu, Chunsheng ; Tang, Yanke ; Gai, Ning</creator><creatorcontrib>Dong, Wenhui ; Qu, Peishu ; Liu, Chunsheng ; Tang, Yanke ; Gai, Ning</creatorcontrib><description>Although person re-identification has made great progress, unsupervised cross-domain adaptive person re-identification is still a challenging problem. With no labeled data in target domain, the performance may have a significant drop. In this paper, we propose an unsupervised cross-domain adaptive person re-identification framework based on horizontal pyramid similarity learning (UHPS). Firstly, horizontal pyramid features are extracted by dividing the deep feature maps into different number of partial feature bins. These feature bins with diverse scales can incorporate not only the global information but also local information in different spatial scales, making the framework more robust in complex environment. Then, horizontal pyramid similarity learning is proposed with the mechanism of fusing together the internal similarity of the target domain and the similarity between the source domain and target domain. Finally, the unsupervised clustering algorithm DBSCAN embeded with the horizontal pyramid similarity is employed to select training data in the target domain and estimate the pseudo labels in each training iteration, for the purpose of adapting the framework to the target domain. The results on Market1501 and DukeMTMC-reID confirm that the proposed framework can adapt to the target domain effectively and outperforms the state-of-the-art unsupervised cross domain person re-identification approaches.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3093083</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Algorithms ; Bins ; Clustering ; Data models ; Deep learning ; Domains ; Feature extraction ; Feature maps ; Generative adversarial networks ; Horizontal pyramid similarity learning ; Learning ; Person re-identification ; Similarity ; Surveillance ; Training ; Unsupervised cross domain adaption ; Unsupervised deep learning</subject><ispartof>IEEE access, 2021-01, Vol.9, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-12e45b71497513e93e899e60f2025ff50d228889ca58336cbff57d9113a47eeb3</citedby><cites>FETCH-LOGICAL-c408t-12e45b71497513e93e899e60f2025ff50d228889ca58336cbff57d9113a47eeb3</cites><orcidid>0000-0001-5157-8951 ; 0000-0002-3218-3644 ; 0000-0001-9770-0596 ; 0000-0001-5516-2486 ; 0000-0001-5949-2984</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9466837$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Dong, Wenhui</creatorcontrib><creatorcontrib>Qu, Peishu</creatorcontrib><creatorcontrib>Liu, Chunsheng</creatorcontrib><creatorcontrib>Tang, Yanke</creatorcontrib><creatorcontrib>Gai, Ning</creatorcontrib><title>Unsupervised Horizontal Pyramid Similarity Learning for Cross-domain Adaptive Person Re-identification</title><title>IEEE access</title><addtitle>Access</addtitle><description>Although person re-identification has made great progress, unsupervised cross-domain adaptive person re-identification is still a challenging problem. With no labeled data in target domain, the performance may have a significant drop. In this paper, we propose an unsupervised cross-domain adaptive person re-identification framework based on horizontal pyramid similarity learning (UHPS). Firstly, horizontal pyramid features are extracted by dividing the deep feature maps into different number of partial feature bins. These feature bins with diverse scales can incorporate not only the global information but also local information in different spatial scales, making the framework more robust in complex environment. Then, horizontal pyramid similarity learning is proposed with the mechanism of fusing together the internal similarity of the target domain and the similarity between the source domain and target domain. Finally, the unsupervised clustering algorithm DBSCAN embeded with the horizontal pyramid similarity is employed to select training data in the target domain and estimate the pseudo labels in each training iteration, for the purpose of adapting the framework to the target domain. The results on Market1501 and DukeMTMC-reID confirm that the proposed framework can adapt to the target domain effectively and outperforms the state-of-the-art unsupervised cross domain person re-identification approaches.</description><subject>Adaptation models</subject><subject>Algorithms</subject><subject>Bins</subject><subject>Clustering</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Domains</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Generative adversarial networks</subject><subject>Horizontal pyramid similarity learning</subject><subject>Learning</subject><subject>Person re-identification</subject><subject>Similarity</subject><subject>Surveillance</subject><subject>Training</subject><subject>Unsupervised cross domain adaption</subject><subject>Unsupervised deep learning</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtqGzEQXUoLDWm-IC-CPq-r--XRLGkTMDTUzbOQVqMgY0uutA64X991NoTOywyHOWcup-tuCV4Rgs239TDcbbcriilZMWwY1uxDd0WJND0TTH78r_7c3bS2w3PoGRLqqotPuZ2OUF9Sg4DuS01_S57cHj2eqzukgLbpkPaupumMNuBqTvkZxVLRUEtrfSgHlzJaB3ec0gugR6itZPQL-hQgTymm0U2p5C_dp-j2DW7e8nX39P3u93Dfb37-eBjWm37kWE89ocCFV4QbJQgDw0AbAxLH-TgRo8CBUq21GZ3QjMnRz5gKhhDmuALw7Lp7WHRDcTt7rOng6tkWl-wrUOqzdXVK4x4sxpE4PgqFneeBU81ZHJWkXnrviXez1tdF61jLnxO0ye7KqeZ5fUsFV5JTJtncxZau8fKQCvF9KsH24o9d_LEXf-ybPzPrdmElAHhnGC6lZor9A8PUjHw</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Dong, Wenhui</creator><creator>Qu, Peishu</creator><creator>Liu, Chunsheng</creator><creator>Tang, Yanke</creator><creator>Gai, Ning</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5157-8951</orcidid><orcidid>https://orcid.org/0000-0002-3218-3644</orcidid><orcidid>https://orcid.org/0000-0001-9770-0596</orcidid><orcidid>https://orcid.org/0000-0001-5516-2486</orcidid><orcidid>https://orcid.org/0000-0001-5949-2984</orcidid></search><sort><creationdate>20210101</creationdate><title>Unsupervised Horizontal Pyramid Similarity Learning for Cross-domain Adaptive Person Re-identification</title><author>Dong, Wenhui ; Qu, Peishu ; Liu, Chunsheng ; Tang, Yanke ; Gai, Ning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-12e45b71497513e93e899e60f2025ff50d228889ca58336cbff57d9113a47eeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation models</topic><topic>Algorithms</topic><topic>Bins</topic><topic>Clustering</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Domains</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Generative adversarial networks</topic><topic>Horizontal pyramid similarity learning</topic><topic>Learning</topic><topic>Person re-identification</topic><topic>Similarity</topic><topic>Surveillance</topic><topic>Training</topic><topic>Unsupervised cross domain adaption</topic><topic>Unsupervised deep learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Wenhui</creatorcontrib><creatorcontrib>Qu, Peishu</creatorcontrib><creatorcontrib>Liu, Chunsheng</creatorcontrib><creatorcontrib>Tang, Yanke</creatorcontrib><creatorcontrib>Gai, Ning</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Wenhui</au><au>Qu, Peishu</au><au>Liu, Chunsheng</au><au>Tang, Yanke</au><au>Gai, Ning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised Horizontal Pyramid Similarity Learning for Cross-domain Adaptive Person Re-identification</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>9</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Although person re-identification has made great progress, unsupervised cross-domain adaptive person re-identification is still a challenging problem. With no labeled data in target domain, the performance may have a significant drop. In this paper, we propose an unsupervised cross-domain adaptive person re-identification framework based on horizontal pyramid similarity learning (UHPS). Firstly, horizontal pyramid features are extracted by dividing the deep feature maps into different number of partial feature bins. These feature bins with diverse scales can incorporate not only the global information but also local information in different spatial scales, making the framework more robust in complex environment. Then, horizontal pyramid similarity learning is proposed with the mechanism of fusing together the internal similarity of the target domain and the similarity between the source domain and target domain. Finally, the unsupervised clustering algorithm DBSCAN embeded with the horizontal pyramid similarity is employed to select training data in the target domain and estimate the pseudo labels in each training iteration, for the purpose of adapting the framework to the target domain. The results on Market1501 and DukeMTMC-reID confirm that the proposed framework can adapt to the target domain effectively and outperforms the state-of-the-art unsupervised cross domain person re-identification approaches.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3093083</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5157-8951</orcidid><orcidid>https://orcid.org/0000-0002-3218-3644</orcidid><orcidid>https://orcid.org/0000-0001-9770-0596</orcidid><orcidid>https://orcid.org/0000-0001-5516-2486</orcidid><orcidid>https://orcid.org/0000-0001-5949-2984</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021-01, Vol.9, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2547642363 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Adaptation models Algorithms Bins Clustering Data models Deep learning Domains Feature extraction Feature maps Generative adversarial networks Horizontal pyramid similarity learning Learning Person re-identification Similarity Surveillance Training Unsupervised cross domain adaption Unsupervised deep learning |
title | Unsupervised Horizontal Pyramid Similarity Learning for Cross-domain Adaptive Person Re-identification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A42%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20Horizontal%20Pyramid%20Similarity%20Learning%20for%20Cross-domain%20Adaptive%20Person%20Re-identification&rft.jtitle=IEEE%20access&rft.au=Dong,%20Wenhui&rft.date=2021-01-01&rft.volume=9&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3093083&rft_dat=%3Cproquest_ieee_%3E2547642363%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2547642363&rft_id=info:pmid/&rft_ieee_id=9466837&rft_doaj_id=oai_doaj_org_article_00f1a4c570ab4d42843fc762b6bbb1ba&rfr_iscdi=true |