TT-QI: Faster Value Iteration in Tensor Train Format for Stochastic Optimal Control
The problem of general non-linear stochastic optimal control with small Wiener noise is studied. The problem is approximated by a Markov Decision Process. Bellman Equation is solved using Value Iteration (VI) algorithm in the low rank Tensor Train format (TT-VI). In this paper a modification of the...
Gespeichert in:
Veröffentlicht in: | Computational mathematics and mathematical physics 2021-05, Vol.61 (5), p.836-846 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 846 |
---|---|
container_issue | 5 |
container_start_page | 836 |
container_title | Computational mathematics and mathematical physics |
container_volume | 61 |
creator | Boyko, A. I. Oseledets, I. V. Ferrer, G. |
description | The problem of general non-linear stochastic optimal control with small Wiener noise is studied. The problem is approximated by a Markov Decision Process. Bellman Equation is solved using Value Iteration (VI) algorithm in the low rank Tensor Train format (TT-VI). In this paper a modification of the TT-VI algorithm called TT-Q-Iteration (TT-QI) is proposed by authors. In it, the nonlinear Bellman Optimality Operator is iteratively applied to the solution as a composition of internal Tensor Train algebraic operations and TT-CROSS algorithm. We show that it has lower asymptotic complexity per iteration than the method existing in the literature, provided that TT-ranks of transition probabilities are small. In test examples of an underpowered inverted pendulum and Dubins cars our method shows up to 3–10 times faster convergence in terms of wall clock time compared with the original method. |
doi_str_mv | 10.1134/S0965542521050043 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2547574742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2547574742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-17c653250ab4d27ab3e53d1a50dbefed8d2e716526eec2188089a8e8da6ef85c3</originalsourceid><addsrcrecordid>eNqNkF1LwzAUhoMoOKc_wLuAl1JN0iZNvZPidDAQWfW2pOmpdnTJTDLEf29mRS9E8Cof53lOTl6ETim5oDTNLpekEJxnjDNKOCFZuocmlHOeCCHYPprsysmufoiOvF8RQkUh0wlaVlXyML_CM-UDOPykhi3gedyq0FuDe4MrMN46XDkVDzPr1irgLl4sg9Uv0eo1vt-Efq0GXFoTnB2O0UGnBg8nX-sUPc5uqvIuWdzfzsvrRaJpIUNCcy14yjhRTdayXDUp8LSlipO2gQ5a2TLIqeBMAGhGpSSyUBJkqwR0kut0is7GvhtnX7fgQ72yW2fikzXjWc7zLM9YpOhIaWe9d9DVGxende81JfUuu_pXdtGRo_MGje287sFo-PYIIULIQogIE5qWffgMq7RbE6J6_n810mykfSTMM7ifL_w93QdyipBJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547574742</pqid></control><display><type>article</type><title>TT-QI: Faster Value Iteration in Tensor Train Format for Stochastic Optimal Control</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Boyko, A. I. ; Oseledets, I. V. ; Ferrer, G.</creator><creatorcontrib>Boyko, A. I. ; Oseledets, I. V. ; Ferrer, G.</creatorcontrib><description>The problem of general non-linear stochastic optimal control with small Wiener noise is studied. The problem is approximated by a Markov Decision Process. Bellman Equation is solved using Value Iteration (VI) algorithm in the low rank Tensor Train format (TT-VI). In this paper a modification of the TT-VI algorithm called TT-Q-Iteration (TT-QI) is proposed by authors. In it, the nonlinear Bellman Optimality Operator is iteratively applied to the solution as a composition of internal Tensor Train algebraic operations and TT-CROSS algorithm. We show that it has lower asymptotic complexity per iteration than the method existing in the literature, provided that TT-ranks of transition probabilities are small. In test examples of an underpowered inverted pendulum and Dubins cars our method shows up to 3–10 times faster convergence in terms of wall clock time compared with the original method.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542521050043</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Asymptotic methods ; Computational Mathematics and Numerical Analysis ; Format ; Markov processes ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Mathematics, Applied ; Noise control ; Nonlinear control ; Optimal Control ; Optimization ; Physical Sciences ; Physics ; Physics, Mathematical ; Railroad cars ; Science & Technology ; Tensors ; Transition probabilities</subject><ispartof>Computational mathematics and mathematical physics, 2021-05, Vol.61 (5), p.836-846</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2021, Vol. 61, No. 5, pp. 836–846. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2021, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2021, Vol. 61, No. 5, pp. 865–877.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>2</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000668966500013</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-c198t-17c653250ab4d27ab3e53d1a50dbefed8d2e716526eec2188089a8e8da6ef85c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0965542521050043$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0965542521050043$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,39265,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Boyko, A. I.</creatorcontrib><creatorcontrib>Oseledets, I. V.</creatorcontrib><creatorcontrib>Ferrer, G.</creatorcontrib><title>TT-QI: Faster Value Iteration in Tensor Train Format for Stochastic Optimal Control</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><addtitle>COMP MATH MATH PHYS</addtitle><description>The problem of general non-linear stochastic optimal control with small Wiener noise is studied. The problem is approximated by a Markov Decision Process. Bellman Equation is solved using Value Iteration (VI) algorithm in the low rank Tensor Train format (TT-VI). In this paper a modification of the TT-VI algorithm called TT-Q-Iteration (TT-QI) is proposed by authors. In it, the nonlinear Bellman Optimality Operator is iteratively applied to the solution as a composition of internal Tensor Train algebraic operations and TT-CROSS algorithm. We show that it has lower asymptotic complexity per iteration than the method existing in the literature, provided that TT-ranks of transition probabilities are small. In test examples of an underpowered inverted pendulum and Dubins cars our method shows up to 3–10 times faster convergence in terms of wall clock time compared with the original method.</description><subject>Algorithms</subject><subject>Asymptotic methods</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Format</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics, Applied</subject><subject>Noise control</subject><subject>Nonlinear control</subject><subject>Optimal Control</subject><subject>Optimization</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Mathematical</subject><subject>Railroad cars</subject><subject>Science & Technology</subject><subject>Tensors</subject><subject>Transition probabilities</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkF1LwzAUhoMoOKc_wLuAl1JN0iZNvZPidDAQWfW2pOmpdnTJTDLEf29mRS9E8Cof53lOTl6ETim5oDTNLpekEJxnjDNKOCFZuocmlHOeCCHYPprsysmufoiOvF8RQkUh0wlaVlXyML_CM-UDOPykhi3gedyq0FuDe4MrMN46XDkVDzPr1irgLl4sg9Uv0eo1vt-Efq0GXFoTnB2O0UGnBg8nX-sUPc5uqvIuWdzfzsvrRaJpIUNCcy14yjhRTdayXDUp8LSlipO2gQ5a2TLIqeBMAGhGpSSyUBJkqwR0kut0is7GvhtnX7fgQ72yW2fikzXjWc7zLM9YpOhIaWe9d9DVGxende81JfUuu_pXdtGRo_MGje287sFo-PYIIULIQogIE5qWffgMq7RbE6J6_n810mykfSTMM7ifL_w93QdyipBJ</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Boyko, A. I.</creator><creator>Oseledets, I. V.</creator><creator>Ferrer, G.</creator><general>Pleiades Publishing</general><general>Pleiades Publishing Inc</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210501</creationdate><title>TT-QI: Faster Value Iteration in Tensor Train Format for Stochastic Optimal Control</title><author>Boyko, A. I. ; Oseledets, I. V. ; Ferrer, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-17c653250ab4d27ab3e53d1a50dbefed8d2e716526eec2188089a8e8da6ef85c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Asymptotic methods</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Format</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics, Applied</topic><topic>Noise control</topic><topic>Nonlinear control</topic><topic>Optimal Control</topic><topic>Optimization</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Mathematical</topic><topic>Railroad cars</topic><topic>Science & Technology</topic><topic>Tensors</topic><topic>Transition probabilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boyko, A. I.</creatorcontrib><creatorcontrib>Oseledets, I. V.</creatorcontrib><creatorcontrib>Ferrer, G.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boyko, A. I.</au><au>Oseledets, I. V.</au><au>Ferrer, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TT-QI: Faster Value Iteration in Tensor Train Format for Stochastic Optimal Control</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><stitle>COMP MATH MATH PHYS</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>61</volume><issue>5</issue><spage>836</spage><epage>846</epage><pages>836-846</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>The problem of general non-linear stochastic optimal control with small Wiener noise is studied. The problem is approximated by a Markov Decision Process. Bellman Equation is solved using Value Iteration (VI) algorithm in the low rank Tensor Train format (TT-VI). In this paper a modification of the TT-VI algorithm called TT-Q-Iteration (TT-QI) is proposed by authors. In it, the nonlinear Bellman Optimality Operator is iteratively applied to the solution as a composition of internal Tensor Train algebraic operations and TT-CROSS algorithm. We show that it has lower asymptotic complexity per iteration than the method existing in the literature, provided that TT-ranks of transition probabilities are small. In test examples of an underpowered inverted pendulum and Dubins cars our method shows up to 3–10 times faster convergence in terms of wall clock time compared with the original method.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542521050043</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0965-5425 |
ispartof | Computational mathematics and mathematical physics, 2021-05, Vol.61 (5), p.836-846 |
issn | 0965-5425 1555-6662 |
language | eng |
recordid | cdi_proquest_journals_2547574742 |
source | SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Algorithms Asymptotic methods Computational Mathematics and Numerical Analysis Format Markov processes Mathematical analysis Mathematics Mathematics and Statistics Mathematics, Applied Noise control Nonlinear control Optimal Control Optimization Physical Sciences Physics Physics, Mathematical Railroad cars Science & Technology Tensors Transition probabilities |
title | TT-QI: Faster Value Iteration in Tensor Train Format for Stochastic Optimal Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T04%3A02%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TT-QI:%20Faster%20Value%20Iteration%20in%20Tensor%20Train%20Format%20for%20Stochastic%20Optimal%20Control&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Boyko,%20A.%20I.&rft.date=2021-05-01&rft.volume=61&rft.issue=5&rft.spage=836&rft.epage=846&rft.pages=836-846&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542521050043&rft_dat=%3Cproquest_webof%3E2547574742%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2547574742&rft_id=info:pmid/&rfr_iscdi=true |