Thermoenhanced osmotic power generator via lithium bromide and asymmetric sulfonated poly(ether ether ketone)/poly(ether sulfone) nanofluidic membrane

Osmotic energy, existing between solutions with different concentrations, is a sustainable and ecofriendly resource for solving energy issues. However, current membrane-based osmotic energy conversion technologies focus on electricity generation from an “open” system by directly mixing salt (NaCl) s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPG Asia materials 2021-07, Vol.13 (1), Article 50
Hauptverfasser: Sun, Yue, Wu, Yadong, Hu, Yuhao, Zhu, Congcong, Guo, Hao, Kong, Xiang-Yu, Luo, Ercang, Jiang, Lei, Wen, Liping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title NPG Asia materials
container_volume 13
creator Sun, Yue
Wu, Yadong
Hu, Yuhao
Zhu, Congcong
Guo, Hao
Kong, Xiang-Yu
Luo, Ercang
Jiang, Lei
Wen, Liping
description Osmotic energy, existing between solutions with different concentrations, is a sustainable and ecofriendly resource for solving energy issues. However, current membrane-based osmotic energy conversion technologies focus on electricity generation from an “open” system by directly mixing salt (NaCl) solutions at room temperature. For the integrated utilization of thermal energy and higher power output performance, we demonstrate thermoenhanced osmotic energy conversion by employing highly soluble lithium bromide (LiBr) solutions, asymmetric sulfonated poly(ether ether ketone)/poly(ether sulfone) (SPEEK/PES) membranes, and LiMn 2 O 4 /carbon nanotube (LMO/CNT) electrodes. The thin top layer of this heat-resistant membrane contains hydrophilic groups (i.e., the sulfonated groups in SPEEK) that are beneficial for ion-selective transport. The thermal effect on each solution is investigated, and osmotic energy conversion can be improved by regulating the heat gradient. The power density is ~16.50 W/m 2 by coupling with a temperature gradient (30 °C). This work is a step forward for promoting the performance of osmotic energy conversion with thermal energy assistance and provides the basis for a closed-loop system with regenerated osmotic energy from other energy forms. Moreover, the external field-osmotic hybrid energy conversion system shows powerful potential in the energy harvesting field. With the assistant of heat, the osmotic power generator with nanofluidic sulfonated poly(ether ether ketone)/poly(ether sulfone) membrane and high soluble lithium bromide shows excellent ion transport behavior and superior output power density for salinity gradient energy harvesting. Research Summary For integrated utilization of sustainable energy and pursuing the high performance of the osmotic energy harvesting, the authors propose a strategy to couple the low-grade thermal energy with the salinity gradient energy by employing a thermoenhanced osmotic power generator. In the system, the LiBr with high solubility and the asymmetric sulfonated poly(ether ether ketone)/poly(ether sulfone) (SPEEK/PES) membranes with high stability and ion selectivity are both chosen for the thermo-enhanced osmotic energy harvesting. The proposed generator achieved the output power density of ~16.50 W/m 2 , extremely high value at 50-fold artificial sea water/river water condition, by coupling with the configuration of 30 ºC temperature gradient. Thus, by using the proposed system, the thermal
doi_str_mv 10.1038/s41427-021-00317-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2547178817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2547178817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-8cd0f9a6665101ffbb8b3855e2603f116573d3e87e4257c00eea1466c913c98c3</originalsourceid><addsrcrecordid>eNp9kc1OxCAURhujiUZ9AVckbnRRhUKBLo3xLzFxo2tC6e1MxwIjUM28iM8rWqOu3FxuwnfOXXxFcUTwGcFUnkdGWCVKXJESY0pE2WwVe0RKVjJci-2fnTW7xWGMK4wx4ZzJmu0V749LCNaDW2pnoEM-Wp8Gg9b-DQJagIOgkw_oddBoHNJymCxqg7dDB0i7Dum4sRZSyEicxt47nbJl7cfNCaSsRvN8huQdnJ7_-ZjjcIqcdr4fp6HLDgu2DdrBQbHT6zHC4fe7XzxdXz1e3pb3Dzd3lxf3paGcplKaDveN5pzXBJO-b1vZUlnXUHFMe0J4LWhHQQpgVS0MxgCaMM5NQ6hppKH7xfHsXQf_MkFMauWn4PJJVdVMECElETlVzSkTfIwBerUOg9VhowhWnxWouQKVK1BfFagmQ3SGYg67BYRf9T_UB2NUjJI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547178817</pqid></control><display><type>article</type><title>Thermoenhanced osmotic power generator via lithium bromide and asymmetric sulfonated poly(ether ether ketone)/poly(ether sulfone) nanofluidic membrane</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Sun, Yue ; Wu, Yadong ; Hu, Yuhao ; Zhu, Congcong ; Guo, Hao ; Kong, Xiang-Yu ; Luo, Ercang ; Jiang, Lei ; Wen, Liping</creator><creatorcontrib>Sun, Yue ; Wu, Yadong ; Hu, Yuhao ; Zhu, Congcong ; Guo, Hao ; Kong, Xiang-Yu ; Luo, Ercang ; Jiang, Lei ; Wen, Liping</creatorcontrib><description>Osmotic energy, existing between solutions with different concentrations, is a sustainable and ecofriendly resource for solving energy issues. However, current membrane-based osmotic energy conversion technologies focus on electricity generation from an “open” system by directly mixing salt (NaCl) solutions at room temperature. For the integrated utilization of thermal energy and higher power output performance, we demonstrate thermoenhanced osmotic energy conversion by employing highly soluble lithium bromide (LiBr) solutions, asymmetric sulfonated poly(ether ether ketone)/poly(ether sulfone) (SPEEK/PES) membranes, and LiMn 2 O 4 /carbon nanotube (LMO/CNT) electrodes. The thin top layer of this heat-resistant membrane contains hydrophilic groups (i.e., the sulfonated groups in SPEEK) that are beneficial for ion-selective transport. The thermal effect on each solution is investigated, and osmotic energy conversion can be improved by regulating the heat gradient. The power density is ~16.50 W/m 2 by coupling with a temperature gradient (30 °C). This work is a step forward for promoting the performance of osmotic energy conversion with thermal energy assistance and provides the basis for a closed-loop system with regenerated osmotic energy from other energy forms. Moreover, the external field-osmotic hybrid energy conversion system shows powerful potential in the energy harvesting field. With the assistant of heat, the osmotic power generator with nanofluidic sulfonated poly(ether ether ketone)/poly(ether sulfone) membrane and high soluble lithium bromide shows excellent ion transport behavior and superior output power density for salinity gradient energy harvesting. Research Summary For integrated utilization of sustainable energy and pursuing the high performance of the osmotic energy harvesting, the authors propose a strategy to couple the low-grade thermal energy with the salinity gradient energy by employing a thermoenhanced osmotic power generator. In the system, the LiBr with high solubility and the asymmetric sulfonated poly(ether ether ketone)/poly(ether sulfone) (SPEEK/PES) membranes with high stability and ion selectivity are both chosen for the thermo-enhanced osmotic energy harvesting. The proposed generator achieved the output power density of ~16.50 W/m 2 , extremely high value at 50-fold artificial sea water/river water condition, by coupling with the configuration of 30 ºC temperature gradient. Thus, by using the proposed system, the thermal energy, especially low-grade ones, has been well harvested and greatly improve the osmotic energy conversion. Thus, the external field-osmotic hybrid energy conversion system could show its great potentials in different fields with proper coupling.</description><identifier>ISSN: 1884-4049</identifier><identifier>EISSN: 1884-4057</identifier><identifier>DOI: 10.1038/s41427-021-00317-9</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/131 ; 140/146 ; 639/301/299 ; 639/925 ; Asymmetry ; Biomaterials ; Carbon nanotubes ; Chemistry and Materials Science ; Energy conversion ; Energy harvesting ; Energy Systems ; Feedback control ; Fluidics ; Heat ; Hybrid systems ; Ion transport ; Lithium manganese oxides ; Materials Science ; Membranes ; Nanofluids ; Optical and Electronic Materials ; Power ; Room temperature ; Structural Materials ; Surface and Interface Science ; Temperature effects ; Thermal energy ; Thermal utilization ; Thin Films ; Transport phenomena</subject><ispartof>NPG Asia materials, 2021-07, Vol.13 (1), Article 50</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-8cd0f9a6665101ffbb8b3855e2603f116573d3e87e4257c00eea1466c913c98c3</citedby><cites>FETCH-LOGICAL-c363t-8cd0f9a6665101ffbb8b3855e2603f116573d3e87e4257c00eea1466c913c98c3</cites><orcidid>0000-0002-4475-2162 ; 0000-0001-8546-8988</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41427-021-00317-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41427-021-00317-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27922,27923,41118,42187,51574</link.rule.ids></links><search><creatorcontrib>Sun, Yue</creatorcontrib><creatorcontrib>Wu, Yadong</creatorcontrib><creatorcontrib>Hu, Yuhao</creatorcontrib><creatorcontrib>Zhu, Congcong</creatorcontrib><creatorcontrib>Guo, Hao</creatorcontrib><creatorcontrib>Kong, Xiang-Yu</creatorcontrib><creatorcontrib>Luo, Ercang</creatorcontrib><creatorcontrib>Jiang, Lei</creatorcontrib><creatorcontrib>Wen, Liping</creatorcontrib><title>Thermoenhanced osmotic power generator via lithium bromide and asymmetric sulfonated poly(ether ether ketone)/poly(ether sulfone) nanofluidic membrane</title><title>NPG Asia materials</title><addtitle>NPG Asia Mater</addtitle><description>Osmotic energy, existing between solutions with different concentrations, is a sustainable and ecofriendly resource for solving energy issues. However, current membrane-based osmotic energy conversion technologies focus on electricity generation from an “open” system by directly mixing salt (NaCl) solutions at room temperature. For the integrated utilization of thermal energy and higher power output performance, we demonstrate thermoenhanced osmotic energy conversion by employing highly soluble lithium bromide (LiBr) solutions, asymmetric sulfonated poly(ether ether ketone)/poly(ether sulfone) (SPEEK/PES) membranes, and LiMn 2 O 4 /carbon nanotube (LMO/CNT) electrodes. The thin top layer of this heat-resistant membrane contains hydrophilic groups (i.e., the sulfonated groups in SPEEK) that are beneficial for ion-selective transport. The thermal effect on each solution is investigated, and osmotic energy conversion can be improved by regulating the heat gradient. The power density is ~16.50 W/m 2 by coupling with a temperature gradient (30 °C). This work is a step forward for promoting the performance of osmotic energy conversion with thermal energy assistance and provides the basis for a closed-loop system with regenerated osmotic energy from other energy forms. Moreover, the external field-osmotic hybrid energy conversion system shows powerful potential in the energy harvesting field. With the assistant of heat, the osmotic power generator with nanofluidic sulfonated poly(ether ether ketone)/poly(ether sulfone) membrane and high soluble lithium bromide shows excellent ion transport behavior and superior output power density for salinity gradient energy harvesting. Research Summary For integrated utilization of sustainable energy and pursuing the high performance of the osmotic energy harvesting, the authors propose a strategy to couple the low-grade thermal energy with the salinity gradient energy by employing a thermoenhanced osmotic power generator. In the system, the LiBr with high solubility and the asymmetric sulfonated poly(ether ether ketone)/poly(ether sulfone) (SPEEK/PES) membranes with high stability and ion selectivity are both chosen for the thermo-enhanced osmotic energy harvesting. The proposed generator achieved the output power density of ~16.50 W/m 2 , extremely high value at 50-fold artificial sea water/river water condition, by coupling with the configuration of 30 ºC temperature gradient. Thus, by using the proposed system, the thermal energy, especially low-grade ones, has been well harvested and greatly improve the osmotic energy conversion. Thus, the external field-osmotic hybrid energy conversion system could show its great potentials in different fields with proper coupling.</description><subject>140/131</subject><subject>140/146</subject><subject>639/301/299</subject><subject>639/925</subject><subject>Asymmetry</subject><subject>Biomaterials</subject><subject>Carbon nanotubes</subject><subject>Chemistry and Materials Science</subject><subject>Energy conversion</subject><subject>Energy harvesting</subject><subject>Energy Systems</subject><subject>Feedback control</subject><subject>Fluidics</subject><subject>Heat</subject><subject>Hybrid systems</subject><subject>Ion transport</subject><subject>Lithium manganese oxides</subject><subject>Materials Science</subject><subject>Membranes</subject><subject>Nanofluids</subject><subject>Optical and Electronic Materials</subject><subject>Power</subject><subject>Room temperature</subject><subject>Structural Materials</subject><subject>Surface and Interface Science</subject><subject>Temperature effects</subject><subject>Thermal energy</subject><subject>Thermal utilization</subject><subject>Thin Films</subject><subject>Transport phenomena</subject><issn>1884-4049</issn><issn>1884-4057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kc1OxCAURhujiUZ9AVckbnRRhUKBLo3xLzFxo2tC6e1MxwIjUM28iM8rWqOu3FxuwnfOXXxFcUTwGcFUnkdGWCVKXJESY0pE2WwVe0RKVjJci-2fnTW7xWGMK4wx4ZzJmu0V749LCNaDW2pnoEM-Wp8Gg9b-DQJagIOgkw_oddBoHNJymCxqg7dDB0i7Dum4sRZSyEicxt47nbJl7cfNCaSsRvN8huQdnJ7_-ZjjcIqcdr4fp6HLDgu2DdrBQbHT6zHC4fe7XzxdXz1e3pb3Dzd3lxf3paGcplKaDveN5pzXBJO-b1vZUlnXUHFMe0J4LWhHQQpgVS0MxgCaMM5NQ6hppKH7xfHsXQf_MkFMauWn4PJJVdVMECElETlVzSkTfIwBerUOg9VhowhWnxWouQKVK1BfFagmQ3SGYg67BYRf9T_UB2NUjJI</recordid><startdate>20210702</startdate><enddate>20210702</enddate><creator>Sun, Yue</creator><creator>Wu, Yadong</creator><creator>Hu, Yuhao</creator><creator>Zhu, Congcong</creator><creator>Guo, Hao</creator><creator>Kong, Xiang-Yu</creator><creator>Luo, Ercang</creator><creator>Jiang, Lei</creator><creator>Wen, Liping</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-4475-2162</orcidid><orcidid>https://orcid.org/0000-0001-8546-8988</orcidid></search><sort><creationdate>20210702</creationdate><title>Thermoenhanced osmotic power generator via lithium bromide and asymmetric sulfonated poly(ether ether ketone)/poly(ether sulfone) nanofluidic membrane</title><author>Sun, Yue ; Wu, Yadong ; Hu, Yuhao ; Zhu, Congcong ; Guo, Hao ; Kong, Xiang-Yu ; Luo, Ercang ; Jiang, Lei ; Wen, Liping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-8cd0f9a6665101ffbb8b3855e2603f116573d3e87e4257c00eea1466c913c98c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>140/131</topic><topic>140/146</topic><topic>639/301/299</topic><topic>639/925</topic><topic>Asymmetry</topic><topic>Biomaterials</topic><topic>Carbon nanotubes</topic><topic>Chemistry and Materials Science</topic><topic>Energy conversion</topic><topic>Energy harvesting</topic><topic>Energy Systems</topic><topic>Feedback control</topic><topic>Fluidics</topic><topic>Heat</topic><topic>Hybrid systems</topic><topic>Ion transport</topic><topic>Lithium manganese oxides</topic><topic>Materials Science</topic><topic>Membranes</topic><topic>Nanofluids</topic><topic>Optical and Electronic Materials</topic><topic>Power</topic><topic>Room temperature</topic><topic>Structural Materials</topic><topic>Surface and Interface Science</topic><topic>Temperature effects</topic><topic>Thermal energy</topic><topic>Thermal utilization</topic><topic>Thin Films</topic><topic>Transport phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yue</creatorcontrib><creatorcontrib>Wu, Yadong</creatorcontrib><creatorcontrib>Hu, Yuhao</creatorcontrib><creatorcontrib>Zhu, Congcong</creatorcontrib><creatorcontrib>Guo, Hao</creatorcontrib><creatorcontrib>Kong, Xiang-Yu</creatorcontrib><creatorcontrib>Luo, Ercang</creatorcontrib><creatorcontrib>Jiang, Lei</creatorcontrib><creatorcontrib>Wen, Liping</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>NPG Asia materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yue</au><au>Wu, Yadong</au><au>Hu, Yuhao</au><au>Zhu, Congcong</au><au>Guo, Hao</au><au>Kong, Xiang-Yu</au><au>Luo, Ercang</au><au>Jiang, Lei</au><au>Wen, Liping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoenhanced osmotic power generator via lithium bromide and asymmetric sulfonated poly(ether ether ketone)/poly(ether sulfone) nanofluidic membrane</atitle><jtitle>NPG Asia materials</jtitle><stitle>NPG Asia Mater</stitle><date>2021-07-02</date><risdate>2021</risdate><volume>13</volume><issue>1</issue><artnum>50</artnum><issn>1884-4049</issn><eissn>1884-4057</eissn><abstract>Osmotic energy, existing between solutions with different concentrations, is a sustainable and ecofriendly resource for solving energy issues. However, current membrane-based osmotic energy conversion technologies focus on electricity generation from an “open” system by directly mixing salt (NaCl) solutions at room temperature. For the integrated utilization of thermal energy and higher power output performance, we demonstrate thermoenhanced osmotic energy conversion by employing highly soluble lithium bromide (LiBr) solutions, asymmetric sulfonated poly(ether ether ketone)/poly(ether sulfone) (SPEEK/PES) membranes, and LiMn 2 O 4 /carbon nanotube (LMO/CNT) electrodes. The thin top layer of this heat-resistant membrane contains hydrophilic groups (i.e., the sulfonated groups in SPEEK) that are beneficial for ion-selective transport. The thermal effect on each solution is investigated, and osmotic energy conversion can be improved by regulating the heat gradient. The power density is ~16.50 W/m 2 by coupling with a temperature gradient (30 °C). This work is a step forward for promoting the performance of osmotic energy conversion with thermal energy assistance and provides the basis for a closed-loop system with regenerated osmotic energy from other energy forms. Moreover, the external field-osmotic hybrid energy conversion system shows powerful potential in the energy harvesting field. With the assistant of heat, the osmotic power generator with nanofluidic sulfonated poly(ether ether ketone)/poly(ether sulfone) membrane and high soluble lithium bromide shows excellent ion transport behavior and superior output power density for salinity gradient energy harvesting. Research Summary For integrated utilization of sustainable energy and pursuing the high performance of the osmotic energy harvesting, the authors propose a strategy to couple the low-grade thermal energy with the salinity gradient energy by employing a thermoenhanced osmotic power generator. In the system, the LiBr with high solubility and the asymmetric sulfonated poly(ether ether ketone)/poly(ether sulfone) (SPEEK/PES) membranes with high stability and ion selectivity are both chosen for the thermo-enhanced osmotic energy harvesting. The proposed generator achieved the output power density of ~16.50 W/m 2 , extremely high value at 50-fold artificial sea water/river water condition, by coupling with the configuration of 30 ºC temperature gradient. Thus, by using the proposed system, the thermal energy, especially low-grade ones, has been well harvested and greatly improve the osmotic energy conversion. Thus, the external field-osmotic hybrid energy conversion system could show its great potentials in different fields with proper coupling.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41427-021-00317-9</doi><orcidid>https://orcid.org/0000-0002-4475-2162</orcidid><orcidid>https://orcid.org/0000-0001-8546-8988</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1884-4049
ispartof NPG Asia materials, 2021-07, Vol.13 (1), Article 50
issn 1884-4049
1884-4057
language eng
recordid cdi_proquest_journals_2547178817
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects 140/131
140/146
639/301/299
639/925
Asymmetry
Biomaterials
Carbon nanotubes
Chemistry and Materials Science
Energy conversion
Energy harvesting
Energy Systems
Feedback control
Fluidics
Heat
Hybrid systems
Ion transport
Lithium manganese oxides
Materials Science
Membranes
Nanofluids
Optical and Electronic Materials
Power
Room temperature
Structural Materials
Surface and Interface Science
Temperature effects
Thermal energy
Thermal utilization
Thin Films
Transport phenomena
title Thermoenhanced osmotic power generator via lithium bromide and asymmetric sulfonated poly(ether ether ketone)/poly(ether sulfone) nanofluidic membrane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A06%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoenhanced%20osmotic%20power%20generator%20via%20lithium%20bromide%20and%20asymmetric%20sulfonated%20poly(ether%20ether%20ketone)/poly(ether%20sulfone)%20nanofluidic%20membrane&rft.jtitle=NPG%20Asia%20materials&rft.au=Sun,%20Yue&rft.date=2021-07-02&rft.volume=13&rft.issue=1&rft.artnum=50&rft.issn=1884-4049&rft.eissn=1884-4057&rft_id=info:doi/10.1038/s41427-021-00317-9&rft_dat=%3Cproquest_cross%3E2547178817%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2547178817&rft_id=info:pmid/&rfr_iscdi=true