Tensor Q-rank: new data dependent definition of tensor rank
Recently, the Tensor Nuclear Norm ( T N N ) regularization based on t-SVD has been widely used in various low tubal-rank tensor recovery tasks. However, these models usually require smooth change of data along the third dimension to ensure their low rank structures. In this paper, we propose a new d...
Gespeichert in:
Veröffentlicht in: | Machine learning 2021-07, Vol.110 (7), p.1867-1900 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1900 |
---|---|
container_issue | 7 |
container_start_page | 1867 |
container_title | Machine learning |
container_volume | 110 |
creator | Kong, Hao Lu, Canyi Lin, Zhouchen |
description | Recently, the
Tensor
Nuclear
Norm
(
T
N
N
)
regularization based on t-SVD has been widely used in various low tubal-rank tensor recovery tasks. However, these models usually require smooth change of data along the third dimension to ensure their low rank structures. In this paper, we propose a new definition of data dependent tensor rank named
tensor Q-rank
by a learnable orthogonal matrix
Q
, and further introduce a unified data dependent low rank tensor recovery model. According to the low rank hypothesis, we introduce two explainable selection methods of
Q
, under which the data tensor may have a more significant low tensor Q-rank structure than that of low tubal-rank structure. Specifically, maximizing the variance of singular value distribution leads to Variance Maximization Tensor Q-Nuclear norm (VMTQN), while minimizing the value of nuclear norm through manifold optimization leads to Manifold Optimization Tensor Q-Nuclear norm (MOTQN). Moreover, we apply these two models to the low rank tensor completion problem, and then give an effective algorithm and briefly analyze why our method works better than TNN based methods in the case of complex data with low sampling rate. Finally, experimental results on real-world datasets demonstrate the superiority of our proposed models in the tensor completion problem with respect to other tensor rank regularization models. |
doi_str_mv | 10.1007/s10994-021-05987-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2547167172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2547167172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-29afddd5e228451992b7e163105d53b047d5162b8515ef3ff0bc0b7023ff71173</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoWFf_gKeC5-hM0nxUT7L4BQsirOfQNol01bQmXcR_b9YK3jzNO_C8M_AQcopwjgDqIiHUdUWBIQVRa0X1HilQKJ5XKfZJAVoLKpGJQ3KU0gYAmNSyIFdrF9IQyycam_B6WQb3WdpmakrrRhesC1NOvg_91A-hHHw5zfyOPiYHvnlL7uR3Lsjz7c16eU9Xj3cPy-sV7bjkE2V14621wjGmK4F1zVrlUHIEYQVvoVJWoGStFiic595D20GrgOWoEBVfkLP57hiHj61Lk9kM2xjyS8NEpVAqVCxTbKa6OKQUnTdj7N-b-GUQzE6SmSWZLMn8SDI6l_hcShkOLy7-nf6n9Q1w7mg5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547167172</pqid></control><display><type>article</type><title>Tensor Q-rank: new data dependent definition of tensor rank</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kong, Hao ; Lu, Canyi ; Lin, Zhouchen</creator><creatorcontrib>Kong, Hao ; Lu, Canyi ; Lin, Zhouchen</creatorcontrib><description>Recently, the
Tensor
Nuclear
Norm
(
T
N
N
)
regularization based on t-SVD has been widely used in various low tubal-rank tensor recovery tasks. However, these models usually require smooth change of data along the third dimension to ensure their low rank structures. In this paper, we propose a new definition of data dependent tensor rank named
tensor Q-rank
by a learnable orthogonal matrix
Q
, and further introduce a unified data dependent low rank tensor recovery model. According to the low rank hypothesis, we introduce two explainable selection methods of
Q
, under which the data tensor may have a more significant low tensor Q-rank structure than that of low tubal-rank structure. Specifically, maximizing the variance of singular value distribution leads to Variance Maximization Tensor Q-Nuclear norm (VMTQN), while minimizing the value of nuclear norm through manifold optimization leads to Manifold Optimization Tensor Q-Nuclear norm (MOTQN). Moreover, we apply these two models to the low rank tensor completion problem, and then give an effective algorithm and briefly analyze why our method works better than TNN based methods in the case of complex data with low sampling rate. Finally, experimental results on real-world datasets demonstrate the superiority of our proposed models in the tensor completion problem with respect to other tensor rank regularization models.</description><identifier>ISSN: 0885-6125</identifier><identifier>EISSN: 1573-0565</identifier><identifier>DOI: 10.1007/s10994-021-05987-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Computer Science ; Control ; Decomposition ; Fourier transforms ; Machine Learning ; Mathematical analysis ; Maximization ; Mechatronics ; Natural Language Processing (NLP) ; Optimization ; Regularization ; Robotics ; Simulation and Modeling ; Tensors ; Time series</subject><ispartof>Machine learning, 2021-07, Vol.110 (7), p.1867-1900</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-29afddd5e228451992b7e163105d53b047d5162b8515ef3ff0bc0b7023ff71173</citedby><cites>FETCH-LOGICAL-c363t-29afddd5e228451992b7e163105d53b047d5162b8515ef3ff0bc0b7023ff71173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10994-021-05987-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10994-021-05987-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kong, Hao</creatorcontrib><creatorcontrib>Lu, Canyi</creatorcontrib><creatorcontrib>Lin, Zhouchen</creatorcontrib><title>Tensor Q-rank: new data dependent definition of tensor rank</title><title>Machine learning</title><addtitle>Mach Learn</addtitle><description>Recently, the
Tensor
Nuclear
Norm
(
T
N
N
)
regularization based on t-SVD has been widely used in various low tubal-rank tensor recovery tasks. However, these models usually require smooth change of data along the third dimension to ensure their low rank structures. In this paper, we propose a new definition of data dependent tensor rank named
tensor Q-rank
by a learnable orthogonal matrix
Q
, and further introduce a unified data dependent low rank tensor recovery model. According to the low rank hypothesis, we introduce two explainable selection methods of
Q
, under which the data tensor may have a more significant low tensor Q-rank structure than that of low tubal-rank structure. Specifically, maximizing the variance of singular value distribution leads to Variance Maximization Tensor Q-Nuclear norm (VMTQN), while minimizing the value of nuclear norm through manifold optimization leads to Manifold Optimization Tensor Q-Nuclear norm (MOTQN). Moreover, we apply these two models to the low rank tensor completion problem, and then give an effective algorithm and briefly analyze why our method works better than TNN based methods in the case of complex data with low sampling rate. Finally, experimental results on real-world datasets demonstrate the superiority of our proposed models in the tensor completion problem with respect to other tensor rank regularization models.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Control</subject><subject>Decomposition</subject><subject>Fourier transforms</subject><subject>Machine Learning</subject><subject>Mathematical analysis</subject><subject>Maximization</subject><subject>Mechatronics</subject><subject>Natural Language Processing (NLP)</subject><subject>Optimization</subject><subject>Regularization</subject><subject>Robotics</subject><subject>Simulation and Modeling</subject><subject>Tensors</subject><subject>Time series</subject><issn>0885-6125</issn><issn>1573-0565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LxDAQhoMoWFf_gKeC5-hM0nxUT7L4BQsirOfQNol01bQmXcR_b9YK3jzNO_C8M_AQcopwjgDqIiHUdUWBIQVRa0X1HilQKJ5XKfZJAVoLKpGJQ3KU0gYAmNSyIFdrF9IQyycam_B6WQb3WdpmakrrRhesC1NOvg_91A-hHHw5zfyOPiYHvnlL7uR3Lsjz7c16eU9Xj3cPy-sV7bjkE2V14621wjGmK4F1zVrlUHIEYQVvoVJWoGStFiic595D20GrgOWoEBVfkLP57hiHj61Lk9kM2xjyS8NEpVAqVCxTbKa6OKQUnTdj7N-b-GUQzE6SmSWZLMn8SDI6l_hcShkOLy7-nf6n9Q1w7mg5</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Kong, Hao</creator><creator>Lu, Canyi</creator><creator>Lin, Zhouchen</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20210701</creationdate><title>Tensor Q-rank: new data dependent definition of tensor rank</title><author>Kong, Hao ; Lu, Canyi ; Lin, Zhouchen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-29afddd5e228451992b7e163105d53b047d5162b8515ef3ff0bc0b7023ff71173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Control</topic><topic>Decomposition</topic><topic>Fourier transforms</topic><topic>Machine Learning</topic><topic>Mathematical analysis</topic><topic>Maximization</topic><topic>Mechatronics</topic><topic>Natural Language Processing (NLP)</topic><topic>Optimization</topic><topic>Regularization</topic><topic>Robotics</topic><topic>Simulation and Modeling</topic><topic>Tensors</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Hao</creatorcontrib><creatorcontrib>Lu, Canyi</creatorcontrib><creatorcontrib>Lin, Zhouchen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Machine learning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Hao</au><au>Lu, Canyi</au><au>Lin, Zhouchen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensor Q-rank: new data dependent definition of tensor rank</atitle><jtitle>Machine learning</jtitle><stitle>Mach Learn</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>110</volume><issue>7</issue><spage>1867</spage><epage>1900</epage><pages>1867-1900</pages><issn>0885-6125</issn><eissn>1573-0565</eissn><abstract>Recently, the
Tensor
Nuclear
Norm
(
T
N
N
)
regularization based on t-SVD has been widely used in various low tubal-rank tensor recovery tasks. However, these models usually require smooth change of data along the third dimension to ensure their low rank structures. In this paper, we propose a new definition of data dependent tensor rank named
tensor Q-rank
by a learnable orthogonal matrix
Q
, and further introduce a unified data dependent low rank tensor recovery model. According to the low rank hypothesis, we introduce two explainable selection methods of
Q
, under which the data tensor may have a more significant low tensor Q-rank structure than that of low tubal-rank structure. Specifically, maximizing the variance of singular value distribution leads to Variance Maximization Tensor Q-Nuclear norm (VMTQN), while minimizing the value of nuclear norm through manifold optimization leads to Manifold Optimization Tensor Q-Nuclear norm (MOTQN). Moreover, we apply these two models to the low rank tensor completion problem, and then give an effective algorithm and briefly analyze why our method works better than TNN based methods in the case of complex data with low sampling rate. Finally, experimental results on real-world datasets demonstrate the superiority of our proposed models in the tensor completion problem with respect to other tensor rank regularization models.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10994-021-05987-8</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-6125 |
ispartof | Machine learning, 2021-07, Vol.110 (7), p.1867-1900 |
issn | 0885-6125 1573-0565 |
language | eng |
recordid | cdi_proquest_journals_2547167172 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Artificial Intelligence Computer Science Control Decomposition Fourier transforms Machine Learning Mathematical analysis Maximization Mechatronics Natural Language Processing (NLP) Optimization Regularization Robotics Simulation and Modeling Tensors Time series |
title | Tensor Q-rank: new data dependent definition of tensor rank |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A07%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensor%20Q-rank:%20new%20data%20dependent%20definition%20of%20tensor%20rank&rft.jtitle=Machine%20learning&rft.au=Kong,%20Hao&rft.date=2021-07-01&rft.volume=110&rft.issue=7&rft.spage=1867&rft.epage=1900&rft.pages=1867-1900&rft.issn=0885-6125&rft.eissn=1573-0565&rft_id=info:doi/10.1007/s10994-021-05987-8&rft_dat=%3Cproquest_cross%3E2547167172%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2547167172&rft_id=info:pmid/&rfr_iscdi=true |