Breast Lesions Detection and Classification via YOLO-Based Fusion Models
With recent breakthroughs in artificial intelligence, the use of deep learning models achieved remarkable advances in computer vision, ecommerce, cybersecurity, and healthcare. Particularly, numerous applications provided efficient solutions to assist radiologists for medical imaging analysis. For i...
Gespeichert in:
Veröffentlicht in: | Computers, materials & continua materials & continua, 2021, Vol.69 (1), p.1407-1425 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1425 |
---|---|
container_issue | 1 |
container_start_page | 1407 |
container_title | Computers, materials & continua |
container_volume | 69 |
creator | Baccouche, Asma Garcia-Zapirain, Begonya Castillo Olea, Cristian S. Elmaghraby, Adel |
description | With recent breakthroughs in artificial intelligence, the use of deep learning models achieved remarkable advances in computer vision, ecommerce, cybersecurity, and healthcare. Particularly, numerous applications provided efficient solutions to assist radiologists for medical imaging analysis. For instance, automatic lesion detection and classification in mammograms is still considered a crucial task that requires more accurate diagnosis and precise analysis of abnormal lesions. In this paper, we propose an end-to-end system, which is based on You-Only-Look-Once (YOLO) model, to simultaneously localize and classify suspicious breast lesions from entire mammograms. The proposed system first preprocesses the raw images, then recognizes abnormal regions as breast lesions and determines their pathology classification as either mass or calcification. We evaluated the model on two publicly available datasets, with 2907 mammograms from the Curated Breast Imaging Subset of Digital Database for Screening Mammography (CBIS-DDSM) and 235 mammograms from INbreast database. We also used a privately collected dataset with 487 mammograms. Furthermore, we suggested a fusion models approach to report more precise detection and accurate classification. Our best results reached a detection accuracy rate of 95.7%, 98.1% and 98% for mass lesions and 74.4%, 71.8% and 73.2% for calcification lesions, respectively on CBIS-DDSM, INbreast and the private dataset. |
doi_str_mv | 10.32604/cmc.2021.018461 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2547166935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2547166935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-5f1d44c43d628372ad6f431146afd8b3cbdff1b8fce49facc678c6f8b8893e553</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhS0EEqWwM1piTrF9HdcZaaAtUlAWGJgsxw8pVdsU3wSJf0_TMjDdo6vzkD5C7jmbgVBMPrqdmwkm-IxxLRW_IBOeS5UJIdTlP31NbhA3jIGCgk3IepGCxZ5WAdtuj_Q59MH1R0nt3tNyaxHb2Dp7en23ln7WVZ0tLAZPl8OYoW-dD1u8JVfRbjHc_d0p-Vi-vJfrrKpXr-VTlTng0Gd55F5KJ8EroWEurFdRAudS2eh1A67xMfJGRxdkEa1zaq6dirrRuoCQ5zAlD-feQ-q-hoC92XRD2h8njcjlnCtVwOhiZ5dLHWIK0RxSu7Ppx3BmTrzMkZcZeZkzL_gFBUxdtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547166935</pqid></control><display><type>article</type><title>Breast Lesions Detection and Classification via YOLO-Based Fusion Models</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Baccouche, Asma ; Garcia-Zapirain, Begonya ; Castillo Olea, Cristian ; S. Elmaghraby, Adel</creator><creatorcontrib>Baccouche, Asma ; Garcia-Zapirain, Begonya ; Castillo Olea, Cristian ; S. Elmaghraby, Adel</creatorcontrib><description>With recent breakthroughs in artificial intelligence, the use of deep learning models achieved remarkable advances in computer vision, ecommerce, cybersecurity, and healthcare. Particularly, numerous applications provided efficient solutions to assist radiologists for medical imaging analysis. For instance, automatic lesion detection and classification in mammograms is still considered a crucial task that requires more accurate diagnosis and precise analysis of abnormal lesions. In this paper, we propose an end-to-end system, which is based on You-Only-Look-Once (YOLO) model, to simultaneously localize and classify suspicious breast lesions from entire mammograms. The proposed system first preprocesses the raw images, then recognizes abnormal regions as breast lesions and determines their pathology classification as either mass or calcification. We evaluated the model on two publicly available datasets, with 2907 mammograms from the Curated Breast Imaging Subset of Digital Database for Screening Mammography (CBIS-DDSM) and 235 mammograms from INbreast database. We also used a privately collected dataset with 487 mammograms. Furthermore, we suggested a fusion models approach to report more precise detection and accurate classification. Our best results reached a detection accuracy rate of 95.7%, 98.1% and 98% for mass lesions and 74.4%, 71.8% and 73.2% for calcification lesions, respectively on CBIS-DDSM, INbreast and the private dataset.</description><identifier>ISSN: 1546-2226</identifier><identifier>ISSN: 1546-2218</identifier><identifier>EISSN: 1546-2226</identifier><identifier>DOI: 10.32604/cmc.2021.018461</identifier><language>eng</language><publisher>Henderson: Tech Science Press</publisher><subject>Artificial intelligence ; Breast ; Calcification ; Classification ; Computer vision ; Cybersecurity ; Datasets ; Digital imaging ; Lesions ; Machine learning ; Medical imaging ; Object recognition</subject><ispartof>Computers, materials & continua, 2021, Vol.69 (1), p.1407-1425</ispartof><rights>2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-5f1d44c43d628372ad6f431146afd8b3cbdff1b8fce49facc678c6f8b8893e553</citedby><cites>FETCH-LOGICAL-c313t-5f1d44c43d628372ad6f431146afd8b3cbdff1b8fce49facc678c6f8b8893e553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Baccouche, Asma</creatorcontrib><creatorcontrib>Garcia-Zapirain, Begonya</creatorcontrib><creatorcontrib>Castillo Olea, Cristian</creatorcontrib><creatorcontrib>S. Elmaghraby, Adel</creatorcontrib><title>Breast Lesions Detection and Classification via YOLO-Based Fusion Models</title><title>Computers, materials & continua</title><description>With recent breakthroughs in artificial intelligence, the use of deep learning models achieved remarkable advances in computer vision, ecommerce, cybersecurity, and healthcare. Particularly, numerous applications provided efficient solutions to assist radiologists for medical imaging analysis. For instance, automatic lesion detection and classification in mammograms is still considered a crucial task that requires more accurate diagnosis and precise analysis of abnormal lesions. In this paper, we propose an end-to-end system, which is based on You-Only-Look-Once (YOLO) model, to simultaneously localize and classify suspicious breast lesions from entire mammograms. The proposed system first preprocesses the raw images, then recognizes abnormal regions as breast lesions and determines their pathology classification as either mass or calcification. We evaluated the model on two publicly available datasets, with 2907 mammograms from the Curated Breast Imaging Subset of Digital Database for Screening Mammography (CBIS-DDSM) and 235 mammograms from INbreast database. We also used a privately collected dataset with 487 mammograms. Furthermore, we suggested a fusion models approach to report more precise detection and accurate classification. Our best results reached a detection accuracy rate of 95.7%, 98.1% and 98% for mass lesions and 74.4%, 71.8% and 73.2% for calcification lesions, respectively on CBIS-DDSM, INbreast and the private dataset.</description><subject>Artificial intelligence</subject><subject>Breast</subject><subject>Calcification</subject><subject>Classification</subject><subject>Computer vision</subject><subject>Cybersecurity</subject><subject>Datasets</subject><subject>Digital imaging</subject><subject>Lesions</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Object recognition</subject><issn>1546-2226</issn><issn>1546-2218</issn><issn>1546-2226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkDtPwzAUhS0EEqWwM1piTrF9HdcZaaAtUlAWGJgsxw8pVdsU3wSJf0_TMjDdo6vzkD5C7jmbgVBMPrqdmwkm-IxxLRW_IBOeS5UJIdTlP31NbhA3jIGCgk3IepGCxZ5WAdtuj_Q59MH1R0nt3tNyaxHb2Dp7en23ln7WVZ0tLAZPl8OYoW-dD1u8JVfRbjHc_d0p-Vi-vJfrrKpXr-VTlTng0Gd55F5KJ8EroWEurFdRAudS2eh1A67xMfJGRxdkEa1zaq6dirrRuoCQ5zAlD-feQ-q-hoC92XRD2h8njcjlnCtVwOhiZ5dLHWIK0RxSu7Ppx3BmTrzMkZcZeZkzL_gFBUxdtQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Baccouche, Asma</creator><creator>Garcia-Zapirain, Begonya</creator><creator>Castillo Olea, Cristian</creator><creator>S. Elmaghraby, Adel</creator><general>Tech Science Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>2021</creationdate><title>Breast Lesions Detection and Classification via YOLO-Based Fusion Models</title><author>Baccouche, Asma ; Garcia-Zapirain, Begonya ; Castillo Olea, Cristian ; S. Elmaghraby, Adel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-5f1d44c43d628372ad6f431146afd8b3cbdff1b8fce49facc678c6f8b8893e553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Breast</topic><topic>Calcification</topic><topic>Classification</topic><topic>Computer vision</topic><topic>Cybersecurity</topic><topic>Datasets</topic><topic>Digital imaging</topic><topic>Lesions</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Object recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Baccouche, Asma</creatorcontrib><creatorcontrib>Garcia-Zapirain, Begonya</creatorcontrib><creatorcontrib>Castillo Olea, Cristian</creatorcontrib><creatorcontrib>S. Elmaghraby, Adel</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Computers, materials & continua</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baccouche, Asma</au><au>Garcia-Zapirain, Begonya</au><au>Castillo Olea, Cristian</au><au>S. Elmaghraby, Adel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breast Lesions Detection and Classification via YOLO-Based Fusion Models</atitle><jtitle>Computers, materials & continua</jtitle><date>2021</date><risdate>2021</risdate><volume>69</volume><issue>1</issue><spage>1407</spage><epage>1425</epage><pages>1407-1425</pages><issn>1546-2226</issn><issn>1546-2218</issn><eissn>1546-2226</eissn><abstract>With recent breakthroughs in artificial intelligence, the use of deep learning models achieved remarkable advances in computer vision, ecommerce, cybersecurity, and healthcare. Particularly, numerous applications provided efficient solutions to assist radiologists for medical imaging analysis. For instance, automatic lesion detection and classification in mammograms is still considered a crucial task that requires more accurate diagnosis and precise analysis of abnormal lesions. In this paper, we propose an end-to-end system, which is based on You-Only-Look-Once (YOLO) model, to simultaneously localize and classify suspicious breast lesions from entire mammograms. The proposed system first preprocesses the raw images, then recognizes abnormal regions as breast lesions and determines their pathology classification as either mass or calcification. We evaluated the model on two publicly available datasets, with 2907 mammograms from the Curated Breast Imaging Subset of Digital Database for Screening Mammography (CBIS-DDSM) and 235 mammograms from INbreast database. We also used a privately collected dataset with 487 mammograms. Furthermore, we suggested a fusion models approach to report more precise detection and accurate classification. Our best results reached a detection accuracy rate of 95.7%, 98.1% and 98% for mass lesions and 74.4%, 71.8% and 73.2% for calcification lesions, respectively on CBIS-DDSM, INbreast and the private dataset.</abstract><cop>Henderson</cop><pub>Tech Science Press</pub><doi>10.32604/cmc.2021.018461</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1546-2226 |
ispartof | Computers, materials & continua, 2021, Vol.69 (1), p.1407-1425 |
issn | 1546-2226 1546-2218 1546-2226 |
language | eng |
recordid | cdi_proquest_journals_2547166935 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Artificial intelligence Breast Calcification Classification Computer vision Cybersecurity Datasets Digital imaging Lesions Machine learning Medical imaging Object recognition |
title | Breast Lesions Detection and Classification via YOLO-Based Fusion Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A18%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breast%20Lesions%20Detection%20and%20Classification%20via%20YOLO-Based%20Fusion%20Models&rft.jtitle=Computers,%20materials%20&%20continua&rft.au=Baccouche,%20Asma&rft.date=2021&rft.volume=69&rft.issue=1&rft.spage=1407&rft.epage=1425&rft.pages=1407-1425&rft.issn=1546-2226&rft.eissn=1546-2226&rft_id=info:doi/10.32604/cmc.2021.018461&rft_dat=%3Cproquest_cross%3E2547166935%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2547166935&rft_id=info:pmid/&rfr_iscdi=true |