Toward quantitative electronic structure in small gold nanoclusters

Ligand-protected gold nanoclusters (AuNCs) feature a dense but finite electronic structure that can be rationalized using qualitative descriptions such as the well-known superatomic model and predicted using quantum chemical calculations. However, the lack of well-resolved experimental probes of a A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2021-07, Vol.155 (1), p.014301-014301
Hauptverfasser: Fagan, Jonathan W., Weerawardene, K. L. Dimuthu M., Cirri, Anthony, Aikens, Christine M., Johnson, Christopher J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 014301
container_issue 1
container_start_page 014301
container_title The Journal of chemical physics
container_volume 155
creator Fagan, Jonathan W.
Weerawardene, K. L. Dimuthu M.
Cirri, Anthony
Aikens, Christine M.
Johnson, Christopher J.
description Ligand-protected gold nanoclusters (AuNCs) feature a dense but finite electronic structure that can be rationalized using qualitative descriptions such as the well-known superatomic model and predicted using quantum chemical calculations. However, the lack of well-resolved experimental probes of a AuNC electronic structure has made the task of evaluating the accuracy of electronic structure descriptions challenging. We compare electronic absorption spectra computed using time-dependent density functional theory to recently collected high resolution experimental spectra of Au9(PPh3)83+ and Au8(PPh3)72+ AuNCs with strikingly similar features. After applying a simple scaling correction, the computed spectrum of Au8(PPh3)72+ yields a suitable match, allowing us to assign low-energy metal–metal transitions in the experimental spectrum. No similar match is obtained after following the same procedure for two previously reported isomers for Au9(PPh3)83+, suggesting either a deficiency in the calculations or the presence of an additional isomer. Instead, we propose assignments for Au9(PPh3)83+ based off of similarities Au8(PPh3)72+. We further model these clusters using a simple particle-in-a-box analysis for an asymmetrical ellipsoidal superatomic core, which allows us to reproduce the same transitions and extract an effective core size and shape that agrees well with that expected from crystal structures. This suggests that the superatomic model, which is typically employed to explain the qualitative features of nanocluster electronic structures, remains valid even for small AuNCs with highly aspherical cores.
doi_str_mv 10.1063/5.0055210
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2547149956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550269132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-8f3f31c688b7830052fc3a6e02b64dcd3611d1309d8e7bf88a0eea4c38df7cf93</originalsourceid><addsrcrecordid>eNp90MtKAzEYBeAgCtbqwjcYcKPC1D_JTCZZSvEGBTd1HdJcZEo6aZNMxbd3tEVBwdXZfBwOB6FzDBMMjN7UE4C6JhgO0AgDF2XDBByiEQDBpWDAjtFJSksAwA2pRmg6D28qmmLTqy63WeV2awvrrc4xdK0uUo69zn20RdsVaaW8L16DN0WnuqB9n7KN6RQdOeWTPdvnGL3c382nj-Xs-eFpejsrdcVwLrmjjmLNOF80nA4zidNUMQtkwSqjDWUYG0xBGG6bheNcgbWq0pQb12gn6Bhd7nrXMWx6m7JctUlb71VnQ58kqWsgTGBKBnrxiy5DH7th3aCqBldC1GxQVzulY0gpWifXsV2p-C4xyM87ZS33dw72emeT_ropdN94G-IPlGvj_sN_mz8AErKDGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547149956</pqid></control><display><type>article</type><title>Toward quantitative electronic structure in small gold nanoclusters</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Fagan, Jonathan W. ; Weerawardene, K. L. Dimuthu M. ; Cirri, Anthony ; Aikens, Christine M. ; Johnson, Christopher J.</creator><creatorcontrib>Fagan, Jonathan W. ; Weerawardene, K. L. Dimuthu M. ; Cirri, Anthony ; Aikens, Christine M. ; Johnson, Christopher J.</creatorcontrib><description>Ligand-protected gold nanoclusters (AuNCs) feature a dense but finite electronic structure that can be rationalized using qualitative descriptions such as the well-known superatomic model and predicted using quantum chemical calculations. However, the lack of well-resolved experimental probes of a AuNC electronic structure has made the task of evaluating the accuracy of electronic structure descriptions challenging. We compare electronic absorption spectra computed using time-dependent density functional theory to recently collected high resolution experimental spectra of Au9(PPh3)83+ and Au8(PPh3)72+ AuNCs with strikingly similar features. After applying a simple scaling correction, the computed spectrum of Au8(PPh3)72+ yields a suitable match, allowing us to assign low-energy metal–metal transitions in the experimental spectrum. No similar match is obtained after following the same procedure for two previously reported isomers for Au9(PPh3)83+, suggesting either a deficiency in the calculations or the presence of an additional isomer. Instead, we propose assignments for Au9(PPh3)83+ based off of similarities Au8(PPh3)72+. We further model these clusters using a simple particle-in-a-box analysis for an asymmetrical ellipsoidal superatomic core, which allows us to reproduce the same transitions and extract an effective core size and shape that agrees well with that expected from crystal structures. This suggests that the superatomic model, which is typically employed to explain the qualitative features of nanocluster electronic structures, remains valid even for small AuNCs with highly aspherical cores.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0055210</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Absorption spectra ; Computation ; Crystal structure ; Density functional theory ; Descriptions ; Electronic structure ; Gold ; Isomers ; Nanoclusters ; Quantum chemistry</subject><ispartof>The Journal of chemical physics, 2021-07, Vol.155 (1), p.014301-014301</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-8f3f31c688b7830052fc3a6e02b64dcd3611d1309d8e7bf88a0eea4c38df7cf93</citedby><cites>FETCH-LOGICAL-c461t-8f3f31c688b7830052fc3a6e02b64dcd3611d1309d8e7bf88a0eea4c38df7cf93</cites><orcidid>0000-0003-4089-5024 ; 0000-0002-0854-7997 ; 0000-0003-0880-9413 ; 0000-0003-1859-5615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0055210$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Fagan, Jonathan W.</creatorcontrib><creatorcontrib>Weerawardene, K. L. Dimuthu M.</creatorcontrib><creatorcontrib>Cirri, Anthony</creatorcontrib><creatorcontrib>Aikens, Christine M.</creatorcontrib><creatorcontrib>Johnson, Christopher J.</creatorcontrib><title>Toward quantitative electronic structure in small gold nanoclusters</title><title>The Journal of chemical physics</title><description>Ligand-protected gold nanoclusters (AuNCs) feature a dense but finite electronic structure that can be rationalized using qualitative descriptions such as the well-known superatomic model and predicted using quantum chemical calculations. However, the lack of well-resolved experimental probes of a AuNC electronic structure has made the task of evaluating the accuracy of electronic structure descriptions challenging. We compare electronic absorption spectra computed using time-dependent density functional theory to recently collected high resolution experimental spectra of Au9(PPh3)83+ and Au8(PPh3)72+ AuNCs with strikingly similar features. After applying a simple scaling correction, the computed spectrum of Au8(PPh3)72+ yields a suitable match, allowing us to assign low-energy metal–metal transitions in the experimental spectrum. No similar match is obtained after following the same procedure for two previously reported isomers for Au9(PPh3)83+, suggesting either a deficiency in the calculations or the presence of an additional isomer. Instead, we propose assignments for Au9(PPh3)83+ based off of similarities Au8(PPh3)72+. We further model these clusters using a simple particle-in-a-box analysis for an asymmetrical ellipsoidal superatomic core, which allows us to reproduce the same transitions and extract an effective core size and shape that agrees well with that expected from crystal structures. This suggests that the superatomic model, which is typically employed to explain the qualitative features of nanocluster electronic structures, remains valid even for small AuNCs with highly aspherical cores.</description><subject>Absorption spectra</subject><subject>Computation</subject><subject>Crystal structure</subject><subject>Density functional theory</subject><subject>Descriptions</subject><subject>Electronic structure</subject><subject>Gold</subject><subject>Isomers</subject><subject>Nanoclusters</subject><subject>Quantum chemistry</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEYBeAgCtbqwjcYcKPC1D_JTCZZSvEGBTd1HdJcZEo6aZNMxbd3tEVBwdXZfBwOB6FzDBMMjN7UE4C6JhgO0AgDF2XDBByiEQDBpWDAjtFJSksAwA2pRmg6D28qmmLTqy63WeV2awvrrc4xdK0uUo69zn20RdsVaaW8L16DN0WnuqB9n7KN6RQdOeWTPdvnGL3c382nj-Xs-eFpejsrdcVwLrmjjmLNOF80nA4zidNUMQtkwSqjDWUYG0xBGG6bheNcgbWq0pQb12gn6Bhd7nrXMWx6m7JctUlb71VnQ58kqWsgTGBKBnrxiy5DH7th3aCqBldC1GxQVzulY0gpWifXsV2p-C4xyM87ZS33dw72emeT_ropdN94G-IPlGvj_sN_mz8AErKDGA</recordid><startdate>20210707</startdate><enddate>20210707</enddate><creator>Fagan, Jonathan W.</creator><creator>Weerawardene, K. L. Dimuthu M.</creator><creator>Cirri, Anthony</creator><creator>Aikens, Christine M.</creator><creator>Johnson, Christopher J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4089-5024</orcidid><orcidid>https://orcid.org/0000-0002-0854-7997</orcidid><orcidid>https://orcid.org/0000-0003-0880-9413</orcidid><orcidid>https://orcid.org/0000-0003-1859-5615</orcidid></search><sort><creationdate>20210707</creationdate><title>Toward quantitative electronic structure in small gold nanoclusters</title><author>Fagan, Jonathan W. ; Weerawardene, K. L. Dimuthu M. ; Cirri, Anthony ; Aikens, Christine M. ; Johnson, Christopher J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-8f3f31c688b7830052fc3a6e02b64dcd3611d1309d8e7bf88a0eea4c38df7cf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption spectra</topic><topic>Computation</topic><topic>Crystal structure</topic><topic>Density functional theory</topic><topic>Descriptions</topic><topic>Electronic structure</topic><topic>Gold</topic><topic>Isomers</topic><topic>Nanoclusters</topic><topic>Quantum chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fagan, Jonathan W.</creatorcontrib><creatorcontrib>Weerawardene, K. L. Dimuthu M.</creatorcontrib><creatorcontrib>Cirri, Anthony</creatorcontrib><creatorcontrib>Aikens, Christine M.</creatorcontrib><creatorcontrib>Johnson, Christopher J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fagan, Jonathan W.</au><au>Weerawardene, K. L. Dimuthu M.</au><au>Cirri, Anthony</au><au>Aikens, Christine M.</au><au>Johnson, Christopher J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward quantitative electronic structure in small gold nanoclusters</atitle><jtitle>The Journal of chemical physics</jtitle><date>2021-07-07</date><risdate>2021</risdate><volume>155</volume><issue>1</issue><spage>014301</spage><epage>014301</epage><pages>014301-014301</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Ligand-protected gold nanoclusters (AuNCs) feature a dense but finite electronic structure that can be rationalized using qualitative descriptions such as the well-known superatomic model and predicted using quantum chemical calculations. However, the lack of well-resolved experimental probes of a AuNC electronic structure has made the task of evaluating the accuracy of electronic structure descriptions challenging. We compare electronic absorption spectra computed using time-dependent density functional theory to recently collected high resolution experimental spectra of Au9(PPh3)83+ and Au8(PPh3)72+ AuNCs with strikingly similar features. After applying a simple scaling correction, the computed spectrum of Au8(PPh3)72+ yields a suitable match, allowing us to assign low-energy metal–metal transitions in the experimental spectrum. No similar match is obtained after following the same procedure for two previously reported isomers for Au9(PPh3)83+, suggesting either a deficiency in the calculations or the presence of an additional isomer. Instead, we propose assignments for Au9(PPh3)83+ based off of similarities Au8(PPh3)72+. We further model these clusters using a simple particle-in-a-box analysis for an asymmetrical ellipsoidal superatomic core, which allows us to reproduce the same transitions and extract an effective core size and shape that agrees well with that expected from crystal structures. This suggests that the superatomic model, which is typically employed to explain the qualitative features of nanocluster electronic structures, remains valid even for small AuNCs with highly aspherical cores.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0055210</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4089-5024</orcidid><orcidid>https://orcid.org/0000-0002-0854-7997</orcidid><orcidid>https://orcid.org/0000-0003-0880-9413</orcidid><orcidid>https://orcid.org/0000-0003-1859-5615</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2021-07, Vol.155 (1), p.014301-014301
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_journals_2547149956
source AIP Journals Complete; Alma/SFX Local Collection
subjects Absorption spectra
Computation
Crystal structure
Density functional theory
Descriptions
Electronic structure
Gold
Isomers
Nanoclusters
Quantum chemistry
title Toward quantitative electronic structure in small gold nanoclusters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A42%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20quantitative%20electronic%20structure%20in%20small%20gold%20nanoclusters&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Fagan,%20Jonathan%20W.&rft.date=2021-07-07&rft.volume=155&rft.issue=1&rft.spage=014301&rft.epage=014301&rft.pages=014301-014301&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0055210&rft_dat=%3Cproquest_cross%3E2550269132%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2547149956&rft_id=info:pmid/&rfr_iscdi=true