Fully 3D Printed and Disposable Paper Supercapacitors

With the development of the internet‐of‐things for applications such as wearables and packaging, a new class of electronics is emerging, characterized by the sheer number of forecast units and their short service‐life. Projected to reach 27 billion units in 2021, connected devices are generating an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2021-07, Vol.33 (26), p.e2101328-n/a
Hauptverfasser: Aeby, Xavier, Poulin, Alexandre, Siqueira, Gilberto, Hausmann, Michael K., Nyström, Gustav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 26
container_start_page e2101328
container_title Advanced materials (Weinheim)
container_volume 33
creator Aeby, Xavier
Poulin, Alexandre
Siqueira, Gilberto
Hausmann, Michael K.
Nyström, Gustav
description With the development of the internet‐of‐things for applications such as wearables and packaging, a new class of electronics is emerging, characterized by the sheer number of forecast units and their short service‐life. Projected to reach 27 billion units in 2021, connected devices are generating an exponentially increasing amount of electronic waste (e‐waste). Fueled by the growing e‐waste problem, the field of sustainable electronics is attracting significant interest. Today, standard energy‐storage technologies such as lithium‐ion or alkaline batteries still power most of smart devices. While they provide good performance, the nonrenewable and toxic materials require dedicated collection and recycling processes. Moreover, their standardized form factor and performance specifications limit the designs of smart devices. Here, exclusively disposable materials are used to fully print nontoxic supercapacitors maintaining a high capacitance of 25.6 F g−1 active material at an operating voltage up to 1.2 V. The presented combination of digital material assembly, stable high‐performance operation, and nontoxicity has the potential to open new avenues within sustainable electronics and applications such as environmental sensing, e‐textiles, and healthcare. Fully 3D printed and disposable paper supercapacitors are designed from the bottom up by a combination of nanocellulose, biopolymers, and carbon nanomaterials leading to monolithic integrated devices with excellent electrochemical properties. The results combining digital material assembly, high performance, and nontoxicity have the potential to move the field of sustainable electronics forward.
doi_str_mv 10.1002/adma.202101328
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2547080434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2547080434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4138-da843ea769a14d6288140567f0eb08c4d9939d53067ff8ab0680262635612b613</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRbK1ePUrAc-rsZ3aPpbEqVCyo52WT3UBK0sTdBum_d0trPXqZgeF534EHoVsMUwxAHoxtzZQAwYApkWdojDnBKQPFz9EYFOWpEkyO0FUIawBQAsQlGlGqVEzAGPHF0DS7hObJytebrbOJ2dgkr0PfBVM0LlmZ3vnkfYizNL0p623nwzW6qEwT3M1xT9Dn4vFj_pwu355e5rNlWjJMZWqNZNSZTCiDmRVESsyAi6wCV4AsmVWKKsspxFMlTQFCAhFEUC4wKQSmE3R_6O199zW4sNXrbvCb-FITzjKQwCiL1PRAlb4LwbtK975ujd9pDHpvSe8t6ZOlGLg71g5F6-wJ_9USAXUAvuvG7f6p07P8dfZX_gOab3Aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547080434</pqid></control><display><type>article</type><title>Fully 3D Printed and Disposable Paper Supercapacitors</title><source>Access via Wiley Online Library</source><creator>Aeby, Xavier ; Poulin, Alexandre ; Siqueira, Gilberto ; Hausmann, Michael K. ; Nyström, Gustav</creator><creatorcontrib>Aeby, Xavier ; Poulin, Alexandre ; Siqueira, Gilberto ; Hausmann, Michael K. ; Nyström, Gustav</creatorcontrib><description>With the development of the internet‐of‐things for applications such as wearables and packaging, a new class of electronics is emerging, characterized by the sheer number of forecast units and their short service‐life. Projected to reach 27 billion units in 2021, connected devices are generating an exponentially increasing amount of electronic waste (e‐waste). Fueled by the growing e‐waste problem, the field of sustainable electronics is attracting significant interest. Today, standard energy‐storage technologies such as lithium‐ion or alkaline batteries still power most of smart devices. While they provide good performance, the nonrenewable and toxic materials require dedicated collection and recycling processes. Moreover, their standardized form factor and performance specifications limit the designs of smart devices. Here, exclusively disposable materials are used to fully print nontoxic supercapacitors maintaining a high capacitance of 25.6 F g−1 active material at an operating voltage up to 1.2 V. The presented combination of digital material assembly, stable high‐performance operation, and nontoxicity has the potential to open new avenues within sustainable electronics and applications such as environmental sensing, e‐textiles, and healthcare. Fully 3D printed and disposable paper supercapacitors are designed from the bottom up by a combination of nanocellulose, biopolymers, and carbon nanomaterials leading to monolithic integrated devices with excellent electrochemical properties. The results combining digital material assembly, high performance, and nontoxicity have the potential to move the field of sustainable electronics forward.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202101328</identifier><identifier>PMID: 33991010</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Alkaline batteries ; direct ink writing ; Electronic devices ; Electronic waste ; Energy storage ; Form factors ; Garbage collection ; green electrolytes ; Lithium ; Materials science ; metal‐free devices ; nanocellulose ; Storage batteries ; Supercapacitors ; Textiles ; Three dimensional printing</subject><ispartof>Advanced materials (Weinheim), 2021-07, Vol.33 (26), p.e2101328-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4138-da843ea769a14d6288140567f0eb08c4d9939d53067ff8ab0680262635612b613</citedby><cites>FETCH-LOGICAL-c4138-da843ea769a14d6288140567f0eb08c4d9939d53067ff8ab0680262635612b613</cites><orcidid>0000-0003-2739-3222</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202101328$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202101328$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33991010$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aeby, Xavier</creatorcontrib><creatorcontrib>Poulin, Alexandre</creatorcontrib><creatorcontrib>Siqueira, Gilberto</creatorcontrib><creatorcontrib>Hausmann, Michael K.</creatorcontrib><creatorcontrib>Nyström, Gustav</creatorcontrib><title>Fully 3D Printed and Disposable Paper Supercapacitors</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>With the development of the internet‐of‐things for applications such as wearables and packaging, a new class of electronics is emerging, characterized by the sheer number of forecast units and their short service‐life. Projected to reach 27 billion units in 2021, connected devices are generating an exponentially increasing amount of electronic waste (e‐waste). Fueled by the growing e‐waste problem, the field of sustainable electronics is attracting significant interest. Today, standard energy‐storage technologies such as lithium‐ion or alkaline batteries still power most of smart devices. While they provide good performance, the nonrenewable and toxic materials require dedicated collection and recycling processes. Moreover, their standardized form factor and performance specifications limit the designs of smart devices. Here, exclusively disposable materials are used to fully print nontoxic supercapacitors maintaining a high capacitance of 25.6 F g−1 active material at an operating voltage up to 1.2 V. The presented combination of digital material assembly, stable high‐performance operation, and nontoxicity has the potential to open new avenues within sustainable electronics and applications such as environmental sensing, e‐textiles, and healthcare. Fully 3D printed and disposable paper supercapacitors are designed from the bottom up by a combination of nanocellulose, biopolymers, and carbon nanomaterials leading to monolithic integrated devices with excellent electrochemical properties. The results combining digital material assembly, high performance, and nontoxicity have the potential to move the field of sustainable electronics forward.</description><subject>Alkaline batteries</subject><subject>direct ink writing</subject><subject>Electronic devices</subject><subject>Electronic waste</subject><subject>Energy storage</subject><subject>Form factors</subject><subject>Garbage collection</subject><subject>green electrolytes</subject><subject>Lithium</subject><subject>Materials science</subject><subject>metal‐free devices</subject><subject>nanocellulose</subject><subject>Storage batteries</subject><subject>Supercapacitors</subject><subject>Textiles</subject><subject>Three dimensional printing</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRbK1ePUrAc-rsZ3aPpbEqVCyo52WT3UBK0sTdBum_d0trPXqZgeF534EHoVsMUwxAHoxtzZQAwYApkWdojDnBKQPFz9EYFOWpEkyO0FUIawBQAsQlGlGqVEzAGPHF0DS7hObJytebrbOJ2dgkr0PfBVM0LlmZ3vnkfYizNL0p623nwzW6qEwT3M1xT9Dn4vFj_pwu355e5rNlWjJMZWqNZNSZTCiDmRVESsyAi6wCV4AsmVWKKsspxFMlTQFCAhFEUC4wKQSmE3R_6O199zW4sNXrbvCb-FITzjKQwCiL1PRAlb4LwbtK975ujd9pDHpvSe8t6ZOlGLg71g5F6-wJ_9USAXUAvuvG7f6p07P8dfZX_gOab3Aw</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Aeby, Xavier</creator><creator>Poulin, Alexandre</creator><creator>Siqueira, Gilberto</creator><creator>Hausmann, Michael K.</creator><creator>Nyström, Gustav</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2739-3222</orcidid></search><sort><creationdate>20210701</creationdate><title>Fully 3D Printed and Disposable Paper Supercapacitors</title><author>Aeby, Xavier ; Poulin, Alexandre ; Siqueira, Gilberto ; Hausmann, Michael K. ; Nyström, Gustav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4138-da843ea769a14d6288140567f0eb08c4d9939d53067ff8ab0680262635612b613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alkaline batteries</topic><topic>direct ink writing</topic><topic>Electronic devices</topic><topic>Electronic waste</topic><topic>Energy storage</topic><topic>Form factors</topic><topic>Garbage collection</topic><topic>green electrolytes</topic><topic>Lithium</topic><topic>Materials science</topic><topic>metal‐free devices</topic><topic>nanocellulose</topic><topic>Storage batteries</topic><topic>Supercapacitors</topic><topic>Textiles</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aeby, Xavier</creatorcontrib><creatorcontrib>Poulin, Alexandre</creatorcontrib><creatorcontrib>Siqueira, Gilberto</creatorcontrib><creatorcontrib>Hausmann, Michael K.</creatorcontrib><creatorcontrib>Nyström, Gustav</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aeby, Xavier</au><au>Poulin, Alexandre</au><au>Siqueira, Gilberto</au><au>Hausmann, Michael K.</au><au>Nyström, Gustav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully 3D Printed and Disposable Paper Supercapacitors</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>33</volume><issue>26</issue><spage>e2101328</spage><epage>n/a</epage><pages>e2101328-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>With the development of the internet‐of‐things for applications such as wearables and packaging, a new class of electronics is emerging, characterized by the sheer number of forecast units and their short service‐life. Projected to reach 27 billion units in 2021, connected devices are generating an exponentially increasing amount of electronic waste (e‐waste). Fueled by the growing e‐waste problem, the field of sustainable electronics is attracting significant interest. Today, standard energy‐storage technologies such as lithium‐ion or alkaline batteries still power most of smart devices. While they provide good performance, the nonrenewable and toxic materials require dedicated collection and recycling processes. Moreover, their standardized form factor and performance specifications limit the designs of smart devices. Here, exclusively disposable materials are used to fully print nontoxic supercapacitors maintaining a high capacitance of 25.6 F g−1 active material at an operating voltage up to 1.2 V. The presented combination of digital material assembly, stable high‐performance operation, and nontoxicity has the potential to open new avenues within sustainable electronics and applications such as environmental sensing, e‐textiles, and healthcare. Fully 3D printed and disposable paper supercapacitors are designed from the bottom up by a combination of nanocellulose, biopolymers, and carbon nanomaterials leading to monolithic integrated devices with excellent electrochemical properties. The results combining digital material assembly, high performance, and nontoxicity have the potential to move the field of sustainable electronics forward.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33991010</pmid><doi>10.1002/adma.202101328</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2739-3222</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2021-07, Vol.33 (26), p.e2101328-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_journals_2547080434
source Access via Wiley Online Library
subjects Alkaline batteries
direct ink writing
Electronic devices
Electronic waste
Energy storage
Form factors
Garbage collection
green electrolytes
Lithium
Materials science
metal‐free devices
nanocellulose
Storage batteries
Supercapacitors
Textiles
Three dimensional printing
title Fully 3D Printed and Disposable Paper Supercapacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A38%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%203D%20Printed%20and%20Disposable%20Paper%20Supercapacitors&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Aeby,%20Xavier&rft.date=2021-07-01&rft.volume=33&rft.issue=26&rft.spage=e2101328&rft.epage=n/a&rft.pages=e2101328-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202101328&rft_dat=%3Cproquest_cross%3E2547080434%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2547080434&rft_id=info:pmid/33991010&rfr_iscdi=true