GRSA Enhanced for Protein Folding Problem in the Case of Peptides
Protein folding problem (PFP) consists of determining the functional three-dimensional structure of a target protein. PFP is an optimization problem where the objective is to find the structure with the lowest Gibbs free energy. It is significant to solve PFP for use in medical and pharmaceutical ap...
Gespeichert in:
Veröffentlicht in: | Axioms 2019, Vol.8 (4), p.136 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 136 |
container_title | Axioms |
container_volume | 8 |
creator | Frausto-Solís, Juan Sánchez-Hernández, Juan Paulo Maldonado-Nava, Fanny G. González-Barbosa, Juan J. |
description | Protein folding problem (PFP) consists of determining the functional three-dimensional structure of a target protein. PFP is an optimization problem where the objective is to find the structure with the lowest Gibbs free energy. It is significant to solve PFP for use in medical and pharmaceutical applications. Hybrid simulated annealing algorithms (HSA) use a kind of simulated annealing or Monte Carlo method, and they are among the most efficient for PFP. The instances of PFP can be classified as follows: (a) Proteins with a large number of amino acids and (b) peptides with a small number of amino acids. Several HSA have been positively applied for the first case, where I-Tasser has been one of the most successful in the CASP competition. PEP-FOLD3 and golden ratio simulated annealing (GRSA) are also two of these algorithms successfully applied to peptides. This paper presents an enhanced golden simulated annealing (GRSA2) where soft perturbations (collision operators), named “on-wall ineffective collision” and “intermolecular ineffective collision”, are applied to generate new solutions in the metropolis cycle. GRSA2 is tested with a dataset for peptides previously proposed, and a comparison with PEP-FOLD3 and I-Tasser is presented. According to the experimentation, GRSA2 has an equivalent performance to those algorithms. |
doi_str_mv | 10.3390/axioms8040136 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2546878538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2546878538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-36d20f07dda273fcb82f61b35887c3a61aff2fa42a9b0bfd12c576f6f8c9f7e83</originalsourceid><addsrcrecordid>eNpVkM1LAzEQxYMoWGqP3gOeV5PMbpI9ltJWoWDx47xkk4zd0t3UZAv637tLPehcZt7weA9-hNxydg9Qsgfz1YQ2aZYzDvKCTARTRcalZpd_7msyS2nPhik5aA4TMl-_vM7pstuZznpHMUS6jaH3TUdX4eCa7mPU9cG3dHj1O08XJnkakG79sW-cTzfkCs0h-dnvnpL31fJt8ZhtntdPi_kms8DyPgPpBEOmnDNCAdpaC5S8hkJrZcFIbhAFmlyYsmY1Oi5soSRK1LZE5TVMyd059xjD58mnvtqHU-yGykoUudRKFzC6srPLxpBS9FgdY9Oa-F1xVo2gqn-g4AdNcFsX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546878538</pqid></control><display><type>article</type><title>GRSA Enhanced for Protein Folding Problem in the Case of Peptides</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Frausto-Solís, Juan ; Sánchez-Hernández, Juan Paulo ; Maldonado-Nava, Fanny G. ; González-Barbosa, Juan J.</creator><creatorcontrib>Frausto-Solís, Juan ; Sánchez-Hernández, Juan Paulo ; Maldonado-Nava, Fanny G. ; González-Barbosa, Juan J.</creatorcontrib><description>Protein folding problem (PFP) consists of determining the functional three-dimensional structure of a target protein. PFP is an optimization problem where the objective is to find the structure with the lowest Gibbs free energy. It is significant to solve PFP for use in medical and pharmaceutical applications. Hybrid simulated annealing algorithms (HSA) use a kind of simulated annealing or Monte Carlo method, and they are among the most efficient for PFP. The instances of PFP can be classified as follows: (a) Proteins with a large number of amino acids and (b) peptides with a small number of amino acids. Several HSA have been positively applied for the first case, where I-Tasser has been one of the most successful in the CASP competition. PEP-FOLD3 and golden ratio simulated annealing (GRSA) are also two of these algorithms successfully applied to peptides. This paper presents an enhanced golden simulated annealing (GRSA2) where soft perturbations (collision operators), named “on-wall ineffective collision” and “intermolecular ineffective collision”, are applied to generate new solutions in the metropolis cycle. GRSA2 is tested with a dataset for peptides previously proposed, and a comparison with PEP-FOLD3 and I-Tasser is presented. According to the experimentation, GRSA2 has an equivalent performance to those algorithms.</description><identifier>ISSN: 2075-1680</identifier><identifier>EISSN: 2075-1680</identifier><identifier>DOI: 10.3390/axioms8040136</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Amino acids ; Computer science ; Computer simulation ; Experimentation ; Folding ; Gibbs free energy ; Methods ; Monte Carlo simulation ; NMR ; Nuclear magnetic resonance ; Optimization ; Peptides ; Perturbation ; Protein folding ; Proteins ; Servers ; Simulated annealing</subject><ispartof>Axioms, 2019, Vol.8 (4), p.136</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-36d20f07dda273fcb82f61b35887c3a61aff2fa42a9b0bfd12c576f6f8c9f7e83</citedby><cites>FETCH-LOGICAL-c304t-36d20f07dda273fcb82f61b35887c3a61aff2fa42a9b0bfd12c576f6f8c9f7e83</cites><orcidid>0000-0002-9448-1946 ; 0000-0001-9307-0734</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Frausto-Solís, Juan</creatorcontrib><creatorcontrib>Sánchez-Hernández, Juan Paulo</creatorcontrib><creatorcontrib>Maldonado-Nava, Fanny G.</creatorcontrib><creatorcontrib>González-Barbosa, Juan J.</creatorcontrib><title>GRSA Enhanced for Protein Folding Problem in the Case of Peptides</title><title>Axioms</title><description>Protein folding problem (PFP) consists of determining the functional three-dimensional structure of a target protein. PFP is an optimization problem where the objective is to find the structure with the lowest Gibbs free energy. It is significant to solve PFP for use in medical and pharmaceutical applications. Hybrid simulated annealing algorithms (HSA) use a kind of simulated annealing or Monte Carlo method, and they are among the most efficient for PFP. The instances of PFP can be classified as follows: (a) Proteins with a large number of amino acids and (b) peptides with a small number of amino acids. Several HSA have been positively applied for the first case, where I-Tasser has been one of the most successful in the CASP competition. PEP-FOLD3 and golden ratio simulated annealing (GRSA) are also two of these algorithms successfully applied to peptides. This paper presents an enhanced golden simulated annealing (GRSA2) where soft perturbations (collision operators), named “on-wall ineffective collision” and “intermolecular ineffective collision”, are applied to generate new solutions in the metropolis cycle. GRSA2 is tested with a dataset for peptides previously proposed, and a comparison with PEP-FOLD3 and I-Tasser is presented. According to the experimentation, GRSA2 has an equivalent performance to those algorithms.</description><subject>Algorithms</subject><subject>Amino acids</subject><subject>Computer science</subject><subject>Computer simulation</subject><subject>Experimentation</subject><subject>Folding</subject><subject>Gibbs free energy</subject><subject>Methods</subject><subject>Monte Carlo simulation</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Optimization</subject><subject>Peptides</subject><subject>Perturbation</subject><subject>Protein folding</subject><subject>Proteins</subject><subject>Servers</subject><subject>Simulated annealing</subject><issn>2075-1680</issn><issn>2075-1680</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpVkM1LAzEQxYMoWGqP3gOeV5PMbpI9ltJWoWDx47xkk4zd0t3UZAv637tLPehcZt7weA9-hNxydg9Qsgfz1YQ2aZYzDvKCTARTRcalZpd_7msyS2nPhik5aA4TMl-_vM7pstuZznpHMUS6jaH3TUdX4eCa7mPU9cG3dHj1O08XJnkakG79sW-cTzfkCs0h-dnvnpL31fJt8ZhtntdPi_kms8DyPgPpBEOmnDNCAdpaC5S8hkJrZcFIbhAFmlyYsmY1Oi5soSRK1LZE5TVMyd059xjD58mnvtqHU-yGykoUudRKFzC6srPLxpBS9FgdY9Oa-F1xVo2gqn-g4AdNcFsX</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Frausto-Solís, Juan</creator><creator>Sánchez-Hernández, Juan Paulo</creator><creator>Maldonado-Nava, Fanny G.</creator><creator>González-Barbosa, Juan J.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9448-1946</orcidid><orcidid>https://orcid.org/0000-0001-9307-0734</orcidid></search><sort><creationdate>2019</creationdate><title>GRSA Enhanced for Protein Folding Problem in the Case of Peptides</title><author>Frausto-Solís, Juan ; Sánchez-Hernández, Juan Paulo ; Maldonado-Nava, Fanny G. ; González-Barbosa, Juan J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-36d20f07dda273fcb82f61b35887c3a61aff2fa42a9b0bfd12c576f6f8c9f7e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Amino acids</topic><topic>Computer science</topic><topic>Computer simulation</topic><topic>Experimentation</topic><topic>Folding</topic><topic>Gibbs free energy</topic><topic>Methods</topic><topic>Monte Carlo simulation</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Optimization</topic><topic>Peptides</topic><topic>Perturbation</topic><topic>Protein folding</topic><topic>Proteins</topic><topic>Servers</topic><topic>Simulated annealing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frausto-Solís, Juan</creatorcontrib><creatorcontrib>Sánchez-Hernández, Juan Paulo</creatorcontrib><creatorcontrib>Maldonado-Nava, Fanny G.</creatorcontrib><creatorcontrib>González-Barbosa, Juan J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Axioms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frausto-Solís, Juan</au><au>Sánchez-Hernández, Juan Paulo</au><au>Maldonado-Nava, Fanny G.</au><au>González-Barbosa, Juan J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GRSA Enhanced for Protein Folding Problem in the Case of Peptides</atitle><jtitle>Axioms</jtitle><date>2019</date><risdate>2019</risdate><volume>8</volume><issue>4</issue><spage>136</spage><pages>136-</pages><issn>2075-1680</issn><eissn>2075-1680</eissn><abstract>Protein folding problem (PFP) consists of determining the functional three-dimensional structure of a target protein. PFP is an optimization problem where the objective is to find the structure with the lowest Gibbs free energy. It is significant to solve PFP for use in medical and pharmaceutical applications. Hybrid simulated annealing algorithms (HSA) use a kind of simulated annealing or Monte Carlo method, and they are among the most efficient for PFP. The instances of PFP can be classified as follows: (a) Proteins with a large number of amino acids and (b) peptides with a small number of amino acids. Several HSA have been positively applied for the first case, where I-Tasser has been one of the most successful in the CASP competition. PEP-FOLD3 and golden ratio simulated annealing (GRSA) are also two of these algorithms successfully applied to peptides. This paper presents an enhanced golden simulated annealing (GRSA2) where soft perturbations (collision operators), named “on-wall ineffective collision” and “intermolecular ineffective collision”, are applied to generate new solutions in the metropolis cycle. GRSA2 is tested with a dataset for peptides previously proposed, and a comparison with PEP-FOLD3 and I-Tasser is presented. According to the experimentation, GRSA2 has an equivalent performance to those algorithms.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/axioms8040136</doi><orcidid>https://orcid.org/0000-0002-9448-1946</orcidid><orcidid>https://orcid.org/0000-0001-9307-0734</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-1680 |
ispartof | Axioms, 2019, Vol.8 (4), p.136 |
issn | 2075-1680 2075-1680 |
language | eng |
recordid | cdi_proquest_journals_2546878538 |
source | MDPI - Multidisciplinary Digital Publishing Institute; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Amino acids Computer science Computer simulation Experimentation Folding Gibbs free energy Methods Monte Carlo simulation NMR Nuclear magnetic resonance Optimization Peptides Perturbation Protein folding Proteins Servers Simulated annealing |
title | GRSA Enhanced for Protein Folding Problem in the Case of Peptides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T18%3A41%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GRSA%20Enhanced%20for%20Protein%20Folding%20Problem%20in%20the%20Case%20of%20Peptides&rft.jtitle=Axioms&rft.au=Frausto-Sol%C3%ADs,%20Juan&rft.date=2019&rft.volume=8&rft.issue=4&rft.spage=136&rft.pages=136-&rft.issn=2075-1680&rft.eissn=2075-1680&rft_id=info:doi/10.3390/axioms8040136&rft_dat=%3Cproquest_cross%3E2546878538%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546878538&rft_id=info:pmid/&rfr_iscdi=true |