Regularized OFU: an Efficient UCB Estimator forNon-linear Contextual Bandit

Balancing exploration and exploitation (EE) is a fundamental problem in contex-tual bandit. One powerful principle for EE trade-off isOptimism in Face of Uncer-tainty(OFU), in which the agent takes the action according to an upper confidencebound (UCB) of reward. OFU has achieved (near-)optimal regr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-06
Hauptverfasser: Zhou, Yichi, Song, Shihong, Zhang, Huishuai, Zhu, Jun, Chen, Wei, Tie-Yan, Liu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zhou, Yichi
Song, Shihong
Zhang, Huishuai
Zhu, Jun
Chen, Wei
Tie-Yan, Liu
description Balancing exploration and exploitation (EE) is a fundamental problem in contex-tual bandit. One powerful principle for EE trade-off isOptimism in Face of Uncer-tainty(OFU), in which the agent takes the action according to an upper confidencebound (UCB) of reward. OFU has achieved (near-)optimal regret bound for lin-ear/kernel contextual bandits. However, it is in general unknown how to deriveefficient and effective EE trade-off methods for non-linearcomplex tasks, suchas contextual bandit with deep neural network as the reward function. In thispaper, we propose a novel OFU algorithm namedregularized OFU(ROFU). InROFU, we measure the uncertainty of the reward by a differentiable function andcompute the upper confidence bound by solving a regularized optimization prob-lem. We prove that, for multi-armed bandit, kernel contextual bandit and neuraltangent kernel bandit, ROFU achieves (near-)optimal regret bounds with certainuncertainty measure, which theoretically justifies its effectiveness on EE trade-off.Importantly, ROFU admits a very efficient implementation with gradient-basedoptimizer, which easily extends to general deep neural network models beyondneural tangent kernel, in sharp contrast with previous OFU methods. The em-pirical evaluation demonstrates that ROFU works extremelywell for contextualbandits under various settings.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2546798502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2546798502</sourcerecordid><originalsourceid>FETCH-proquest_journals_25467985023</originalsourceid><addsrcrecordid>eNqNyk0LgjAcgPERBEn5Hf7QWVibU-uoKEFQEHmWkVtM1lZ7gejT16EP0Ok5_J4ZSgilm6zKCVmg1PsJY0yKkjBGE3Q4i1vU3Km3GOHU9TvgBlop1VUJE6Bvamh9UHcerANp3dGaTCsjuIPGmiBeIXINNTejCis0l1x7kf66ROuuvTT77OHsMwofhslGZ740EJYX5bZimND_rg-N6TxT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546798502</pqid></control><display><type>article</type><title>Regularized OFU: an Efficient UCB Estimator forNon-linear Contextual Bandit</title><source>Free E- Journals</source><creator>Zhou, Yichi ; Song, Shihong ; Zhang, Huishuai ; Zhu, Jun ; Chen, Wei ; Tie-Yan, Liu</creator><creatorcontrib>Zhou, Yichi ; Song, Shihong ; Zhang, Huishuai ; Zhu, Jun ; Chen, Wei ; Tie-Yan, Liu</creatorcontrib><description>Balancing exploration and exploitation (EE) is a fundamental problem in contex-tual bandit. One powerful principle for EE trade-off isOptimism in Face of Uncer-tainty(OFU), in which the agent takes the action according to an upper confidencebound (UCB) of reward. OFU has achieved (near-)optimal regret bound for lin-ear/kernel contextual bandits. However, it is in general unknown how to deriveefficient and effective EE trade-off methods for non-linearcomplex tasks, suchas contextual bandit with deep neural network as the reward function. In thispaper, we propose a novel OFU algorithm namedregularized OFU(ROFU). InROFU, we measure the uncertainty of the reward by a differentiable function andcompute the upper confidence bound by solving a regularized optimization prob-lem. We prove that, for multi-armed bandit, kernel contextual bandit and neuraltangent kernel bandit, ROFU achieves (near-)optimal regret bounds with certainuncertainty measure, which theoretically justifies its effectiveness on EE trade-off.Importantly, ROFU admits a very efficient implementation with gradient-basedoptimizer, which easily extends to general deep neural network models beyondneural tangent kernel, in sharp contrast with previous OFU methods. The em-pirical evaluation demonstrates that ROFU works extremelywell for contextualbandits under various settings.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Artificial neural networks ; Decision theory ; Kernels ; Neural networks ; Optimization ; Tradeoffs</subject><ispartof>arXiv.org, 2021-06</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Zhou, Yichi</creatorcontrib><creatorcontrib>Song, Shihong</creatorcontrib><creatorcontrib>Zhang, Huishuai</creatorcontrib><creatorcontrib>Zhu, Jun</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Tie-Yan, Liu</creatorcontrib><title>Regularized OFU: an Efficient UCB Estimator forNon-linear Contextual Bandit</title><title>arXiv.org</title><description>Balancing exploration and exploitation (EE) is a fundamental problem in contex-tual bandit. One powerful principle for EE trade-off isOptimism in Face of Uncer-tainty(OFU), in which the agent takes the action according to an upper confidencebound (UCB) of reward. OFU has achieved (near-)optimal regret bound for lin-ear/kernel contextual bandits. However, it is in general unknown how to deriveefficient and effective EE trade-off methods for non-linearcomplex tasks, suchas contextual bandit with deep neural network as the reward function. In thispaper, we propose a novel OFU algorithm namedregularized OFU(ROFU). InROFU, we measure the uncertainty of the reward by a differentiable function andcompute the upper confidence bound by solving a regularized optimization prob-lem. We prove that, for multi-armed bandit, kernel contextual bandit and neuraltangent kernel bandit, ROFU achieves (near-)optimal regret bounds with certainuncertainty measure, which theoretically justifies its effectiveness on EE trade-off.Importantly, ROFU admits a very efficient implementation with gradient-basedoptimizer, which easily extends to general deep neural network models beyondneural tangent kernel, in sharp contrast with previous OFU methods. The em-pirical evaluation demonstrates that ROFU works extremelywell for contextualbandits under various settings.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Decision theory</subject><subject>Kernels</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Tradeoffs</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyk0LgjAcgPERBEn5Hf7QWVibU-uoKEFQEHmWkVtM1lZ7gejT16EP0Ok5_J4ZSgilm6zKCVmg1PsJY0yKkjBGE3Q4i1vU3Km3GOHU9TvgBlop1VUJE6Bvamh9UHcerANp3dGaTCsjuIPGmiBeIXINNTejCis0l1x7kf66ROuuvTT77OHsMwofhslGZ740EJYX5bZimND_rg-N6TxT</recordid><startdate>20210629</startdate><enddate>20210629</enddate><creator>Zhou, Yichi</creator><creator>Song, Shihong</creator><creator>Zhang, Huishuai</creator><creator>Zhu, Jun</creator><creator>Chen, Wei</creator><creator>Tie-Yan, Liu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210629</creationdate><title>Regularized OFU: an Efficient UCB Estimator forNon-linear Contextual Bandit</title><author>Zhou, Yichi ; Song, Shihong ; Zhang, Huishuai ; Zhu, Jun ; Chen, Wei ; Tie-Yan, Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25467985023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Decision theory</topic><topic>Kernels</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Tradeoffs</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yichi</creatorcontrib><creatorcontrib>Song, Shihong</creatorcontrib><creatorcontrib>Zhang, Huishuai</creatorcontrib><creatorcontrib>Zhu, Jun</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Tie-Yan, Liu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yichi</au><au>Song, Shihong</au><au>Zhang, Huishuai</au><au>Zhu, Jun</au><au>Chen, Wei</au><au>Tie-Yan, Liu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Regularized OFU: an Efficient UCB Estimator forNon-linear Contextual Bandit</atitle><jtitle>arXiv.org</jtitle><date>2021-06-29</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Balancing exploration and exploitation (EE) is a fundamental problem in contex-tual bandit. One powerful principle for EE trade-off isOptimism in Face of Uncer-tainty(OFU), in which the agent takes the action according to an upper confidencebound (UCB) of reward. OFU has achieved (near-)optimal regret bound for lin-ear/kernel contextual bandits. However, it is in general unknown how to deriveefficient and effective EE trade-off methods for non-linearcomplex tasks, suchas contextual bandit with deep neural network as the reward function. In thispaper, we propose a novel OFU algorithm namedregularized OFU(ROFU). InROFU, we measure the uncertainty of the reward by a differentiable function andcompute the upper confidence bound by solving a regularized optimization prob-lem. We prove that, for multi-armed bandit, kernel contextual bandit and neuraltangent kernel bandit, ROFU achieves (near-)optimal regret bounds with certainuncertainty measure, which theoretically justifies its effectiveness on EE trade-off.Importantly, ROFU admits a very efficient implementation with gradient-basedoptimizer, which easily extends to general deep neural network models beyondneural tangent kernel, in sharp contrast with previous OFU methods. The em-pirical evaluation demonstrates that ROFU works extremelywell for contextualbandits under various settings.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2546798502
source Free E- Journals
subjects Algorithms
Artificial neural networks
Decision theory
Kernels
Neural networks
Optimization
Tradeoffs
title Regularized OFU: an Efficient UCB Estimator forNon-linear Contextual Bandit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A50%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Regularized%20OFU:%20an%20Efficient%20UCB%20Estimator%20forNon-linear%20Contextual%20Bandit&rft.jtitle=arXiv.org&rft.au=Zhou,%20Yichi&rft.date=2021-06-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2546798502%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546798502&rft_id=info:pmid/&rfr_iscdi=true