Exploring the chemical structure of polydapsone

Polydapsone is a promising polymer that has been prepared mainly as copolymers. Due to the similarity of dapsone monomer to aniline, its polymerization has been carried out in the same conditions as in the synthesis of polyaniline, but unlike this one, polydapsone chemical structure and properties a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloid and polymer science 2021-07, Vol.299 (7), p.1085-1094
Hauptverfasser: de Barros, Alexandra Helena, Lazzarini Dutra, Rita de Cássia, Liu, Andréa Santos, Pontes, Marcelo André Petry, Ferrão, Luiz Fernando Araujo, Kawachi, Elizabete Yoshie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1094
container_issue 7
container_start_page 1085
container_title Colloid and polymer science
container_volume 299
creator de Barros, Alexandra Helena
Lazzarini Dutra, Rita de Cássia
Liu, Andréa Santos
Pontes, Marcelo André Petry
Ferrão, Luiz Fernando Araujo
Kawachi, Elizabete Yoshie
description Polydapsone is a promising polymer that has been prepared mainly as copolymers. Due to the similarity of dapsone monomer to aniline, its polymerization has been carried out in the same conditions as in the synthesis of polyaniline, but unlike this one, polydapsone chemical structure and properties are still not fully known. In this paper, polydapsone was synthesized by oxidative polymerization in an aqueous HCl medium, using ammonium persulfate as the oxidizer agent. It was observed that carrying the synthesis both at room temperature and for 48 h resulted in higher yields than at 5 °C or for 24 h. The molar ratio of dapsone:oxidant also increased the reaction yield with the increase in oxidant content, and the stoichiometric ratio of 1:4 led to the best results. Fourier transform infrared and Raman spectroscopies summed to density functional theory calculations revealed that the polymerization of dapsone occurs via amino-amino coupling with the formation of protonated amines and that the Cl − counterions take part in the structure. Ultraviolet spectroscopy showed no significant differences between the monomer and the polymer, suggesting that polydapsone has a semiconductor character. X-ray diffraction revealed a semicrystalline morphology that appears only when the polymer is in its protonated form, at the same time that its thermal stability increases with deprotonation, as shown by thermal analysis. This approach allowed us to suggest a chemical structure for polydapsone and correlate the synthesis parameters with the chemical and crystalline structures and further with some physicochemical properties.
doi_str_mv 10.1007/s00396-021-04829-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2546403000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2546403000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-31ab10c64b8792bb517de8c145291450ffa580462f1139278904df92f33ac58b3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC59jJ5GM3RynVCgUvCt5CNk1sy7ZZk12w_96tK3jzMnOZ5x3eh5BbBvcMoJxlAK4VBWQURIWa4hmZMMElZZKrczIBDpwKwPdLcpXzDgCEVmpCZouvtolpe_gouo0v3Mbvt842Re5S77o--SKGoo3NcW3bHA_-mlwE22R_87un5O1x8Tpf0tXL0_P8YUUdltBRzmzNwClRV6XGupasXPvKMSFRDwNCsLICoTAwxjWWlQaxDhoD59bJquZTcjfmtil-9j53Zhf7dBheGpRCiaHPUHlKcLxyKeacfDBt2u5tOhoG5iTGjGLMIMb8iDE4QHyEcnvq7dNf9D_UN0lUZCE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546403000</pqid></control><display><type>article</type><title>Exploring the chemical structure of polydapsone</title><source>SpringerLink</source><creator>de Barros, Alexandra Helena ; Lazzarini Dutra, Rita de Cássia ; Liu, Andréa Santos ; Pontes, Marcelo André Petry ; Ferrão, Luiz Fernando Araujo ; Kawachi, Elizabete Yoshie</creator><creatorcontrib>de Barros, Alexandra Helena ; Lazzarini Dutra, Rita de Cássia ; Liu, Andréa Santos ; Pontes, Marcelo André Petry ; Ferrão, Luiz Fernando Araujo ; Kawachi, Elizabete Yoshie</creatorcontrib><description>Polydapsone is a promising polymer that has been prepared mainly as copolymers. Due to the similarity of dapsone monomer to aniline, its polymerization has been carried out in the same conditions as in the synthesis of polyaniline, but unlike this one, polydapsone chemical structure and properties are still not fully known. In this paper, polydapsone was synthesized by oxidative polymerization in an aqueous HCl medium, using ammonium persulfate as the oxidizer agent. It was observed that carrying the synthesis both at room temperature and for 48 h resulted in higher yields than at 5 °C or for 24 h. The molar ratio of dapsone:oxidant also increased the reaction yield with the increase in oxidant content, and the stoichiometric ratio of 1:4 led to the best results. Fourier transform infrared and Raman spectroscopies summed to density functional theory calculations revealed that the polymerization of dapsone occurs via amino-amino coupling with the formation of protonated amines and that the Cl − counterions take part in the structure. Ultraviolet spectroscopy showed no significant differences between the monomer and the polymer, suggesting that polydapsone has a semiconductor character. X-ray diffraction revealed a semicrystalline morphology that appears only when the polymer is in its protonated form, at the same time that its thermal stability increases with deprotonation, as shown by thermal analysis. This approach allowed us to suggest a chemical structure for polydapsone and correlate the synthesis parameters with the chemical and crystalline structures and further with some physicochemical properties.</description><identifier>ISSN: 0303-402X</identifier><identifier>EISSN: 1435-1536</identifier><identifier>DOI: 10.1007/s00396-021-04829-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amines ; Ammonium peroxodisulfate ; Aniline ; Characterization and Evaluation of Materials ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Complex Fluids and Microfluidics ; Copolymers ; Density functional theory ; Diaminodiphenylsulfone ; Food Science ; Fourier transforms ; Infrared spectroscopy ; Monomers ; Morphology ; Nanotechnology and Microengineering ; Original Contribution ; Oxidizing agents ; Physical Chemistry ; Polyanilines ; Polymer Sciences ; Polymerization ; Polymers ; Room temperature ; Soft and Granular Matter ; Stability analysis ; Thermal analysis ; Thermal stability</subject><ispartof>Colloid and polymer science, 2021-07, Vol.299 (7), p.1085-1094</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-31ab10c64b8792bb517de8c145291450ffa580462f1139278904df92f33ac58b3</cites><orcidid>0000-0002-6477-0886</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00396-021-04829-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00396-021-04829-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>de Barros, Alexandra Helena</creatorcontrib><creatorcontrib>Lazzarini Dutra, Rita de Cássia</creatorcontrib><creatorcontrib>Liu, Andréa Santos</creatorcontrib><creatorcontrib>Pontes, Marcelo André Petry</creatorcontrib><creatorcontrib>Ferrão, Luiz Fernando Araujo</creatorcontrib><creatorcontrib>Kawachi, Elizabete Yoshie</creatorcontrib><title>Exploring the chemical structure of polydapsone</title><title>Colloid and polymer science</title><addtitle>Colloid Polym Sci</addtitle><description>Polydapsone is a promising polymer that has been prepared mainly as copolymers. Due to the similarity of dapsone monomer to aniline, its polymerization has been carried out in the same conditions as in the synthesis of polyaniline, but unlike this one, polydapsone chemical structure and properties are still not fully known. In this paper, polydapsone was synthesized by oxidative polymerization in an aqueous HCl medium, using ammonium persulfate as the oxidizer agent. It was observed that carrying the synthesis both at room temperature and for 48 h resulted in higher yields than at 5 °C or for 24 h. The molar ratio of dapsone:oxidant also increased the reaction yield with the increase in oxidant content, and the stoichiometric ratio of 1:4 led to the best results. Fourier transform infrared and Raman spectroscopies summed to density functional theory calculations revealed that the polymerization of dapsone occurs via amino-amino coupling with the formation of protonated amines and that the Cl − counterions take part in the structure. Ultraviolet spectroscopy showed no significant differences between the monomer and the polymer, suggesting that polydapsone has a semiconductor character. X-ray diffraction revealed a semicrystalline morphology that appears only when the polymer is in its protonated form, at the same time that its thermal stability increases with deprotonation, as shown by thermal analysis. This approach allowed us to suggest a chemical structure for polydapsone and correlate the synthesis parameters with the chemical and crystalline structures and further with some physicochemical properties.</description><subject>Amines</subject><subject>Ammonium peroxodisulfate</subject><subject>Aniline</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Complex Fluids and Microfluidics</subject><subject>Copolymers</subject><subject>Density functional theory</subject><subject>Diaminodiphenylsulfone</subject><subject>Food Science</subject><subject>Fourier transforms</subject><subject>Infrared spectroscopy</subject><subject>Monomers</subject><subject>Morphology</subject><subject>Nanotechnology and Microengineering</subject><subject>Original Contribution</subject><subject>Oxidizing agents</subject><subject>Physical Chemistry</subject><subject>Polyanilines</subject><subject>Polymer Sciences</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Room temperature</subject><subject>Soft and Granular Matter</subject><subject>Stability analysis</subject><subject>Thermal analysis</subject><subject>Thermal stability</subject><issn>0303-402X</issn><issn>1435-1536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOC59jJ5GM3RynVCgUvCt5CNk1sy7ZZk12w_96tK3jzMnOZ5x3eh5BbBvcMoJxlAK4VBWQURIWa4hmZMMElZZKrczIBDpwKwPdLcpXzDgCEVmpCZouvtolpe_gouo0v3Mbvt842Re5S77o--SKGoo3NcW3bHA_-mlwE22R_87un5O1x8Tpf0tXL0_P8YUUdltBRzmzNwClRV6XGupasXPvKMSFRDwNCsLICoTAwxjWWlQaxDhoD59bJquZTcjfmtil-9j53Zhf7dBheGpRCiaHPUHlKcLxyKeacfDBt2u5tOhoG5iTGjGLMIMb8iDE4QHyEcnvq7dNf9D_UN0lUZCE</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>de Barros, Alexandra Helena</creator><creator>Lazzarini Dutra, Rita de Cássia</creator><creator>Liu, Andréa Santos</creator><creator>Pontes, Marcelo André Petry</creator><creator>Ferrão, Luiz Fernando Araujo</creator><creator>Kawachi, Elizabete Yoshie</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-6477-0886</orcidid></search><sort><creationdate>20210701</creationdate><title>Exploring the chemical structure of polydapsone</title><author>de Barros, Alexandra Helena ; Lazzarini Dutra, Rita de Cássia ; Liu, Andréa Santos ; Pontes, Marcelo André Petry ; Ferrão, Luiz Fernando Araujo ; Kawachi, Elizabete Yoshie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-31ab10c64b8792bb517de8c145291450ffa580462f1139278904df92f33ac58b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amines</topic><topic>Ammonium peroxodisulfate</topic><topic>Aniline</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Complex Fluids and Microfluidics</topic><topic>Copolymers</topic><topic>Density functional theory</topic><topic>Diaminodiphenylsulfone</topic><topic>Food Science</topic><topic>Fourier transforms</topic><topic>Infrared spectroscopy</topic><topic>Monomers</topic><topic>Morphology</topic><topic>Nanotechnology and Microengineering</topic><topic>Original Contribution</topic><topic>Oxidizing agents</topic><topic>Physical Chemistry</topic><topic>Polyanilines</topic><topic>Polymer Sciences</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Room temperature</topic><topic>Soft and Granular Matter</topic><topic>Stability analysis</topic><topic>Thermal analysis</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Barros, Alexandra Helena</creatorcontrib><creatorcontrib>Lazzarini Dutra, Rita de Cássia</creatorcontrib><creatorcontrib>Liu, Andréa Santos</creatorcontrib><creatorcontrib>Pontes, Marcelo André Petry</creatorcontrib><creatorcontrib>Ferrão, Luiz Fernando Araujo</creatorcontrib><creatorcontrib>Kawachi, Elizabete Yoshie</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Colloid and polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Barros, Alexandra Helena</au><au>Lazzarini Dutra, Rita de Cássia</au><au>Liu, Andréa Santos</au><au>Pontes, Marcelo André Petry</au><au>Ferrão, Luiz Fernando Araujo</au><au>Kawachi, Elizabete Yoshie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the chemical structure of polydapsone</atitle><jtitle>Colloid and polymer science</jtitle><stitle>Colloid Polym Sci</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>299</volume><issue>7</issue><spage>1085</spage><epage>1094</epage><pages>1085-1094</pages><issn>0303-402X</issn><eissn>1435-1536</eissn><abstract>Polydapsone is a promising polymer that has been prepared mainly as copolymers. Due to the similarity of dapsone monomer to aniline, its polymerization has been carried out in the same conditions as in the synthesis of polyaniline, but unlike this one, polydapsone chemical structure and properties are still not fully known. In this paper, polydapsone was synthesized by oxidative polymerization in an aqueous HCl medium, using ammonium persulfate as the oxidizer agent. It was observed that carrying the synthesis both at room temperature and for 48 h resulted in higher yields than at 5 °C or for 24 h. The molar ratio of dapsone:oxidant also increased the reaction yield with the increase in oxidant content, and the stoichiometric ratio of 1:4 led to the best results. Fourier transform infrared and Raman spectroscopies summed to density functional theory calculations revealed that the polymerization of dapsone occurs via amino-amino coupling with the formation of protonated amines and that the Cl − counterions take part in the structure. Ultraviolet spectroscopy showed no significant differences between the monomer and the polymer, suggesting that polydapsone has a semiconductor character. X-ray diffraction revealed a semicrystalline morphology that appears only when the polymer is in its protonated form, at the same time that its thermal stability increases with deprotonation, as shown by thermal analysis. This approach allowed us to suggest a chemical structure for polydapsone and correlate the synthesis parameters with the chemical and crystalline structures and further with some physicochemical properties.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00396-021-04829-2</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6477-0886</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0303-402X
ispartof Colloid and polymer science, 2021-07, Vol.299 (7), p.1085-1094
issn 0303-402X
1435-1536
language eng
recordid cdi_proquest_journals_2546403000
source SpringerLink
subjects Amines
Ammonium peroxodisulfate
Aniline
Characterization and Evaluation of Materials
Chemical synthesis
Chemistry
Chemistry and Materials Science
Complex Fluids and Microfluidics
Copolymers
Density functional theory
Diaminodiphenylsulfone
Food Science
Fourier transforms
Infrared spectroscopy
Monomers
Morphology
Nanotechnology and Microengineering
Original Contribution
Oxidizing agents
Physical Chemistry
Polyanilines
Polymer Sciences
Polymerization
Polymers
Room temperature
Soft and Granular Matter
Stability analysis
Thermal analysis
Thermal stability
title Exploring the chemical structure of polydapsone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A55%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20chemical%20structure%20of%20polydapsone&rft.jtitle=Colloid%20and%20polymer%20science&rft.au=de%20Barros,%20Alexandra%20Helena&rft.date=2021-07-01&rft.volume=299&rft.issue=7&rft.spage=1085&rft.epage=1094&rft.pages=1085-1094&rft.issn=0303-402X&rft.eissn=1435-1536&rft_id=info:doi/10.1007/s00396-021-04829-2&rft_dat=%3Cproquest_cross%3E2546403000%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546403000&rft_id=info:pmid/&rfr_iscdi=true